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Motivation

My cool 
program 

Compiler
-O2

DCE

Peephole

Unroll

Inline
Executable

But what to do if executable is slow?

Replace –O2 with –O5

Unroll
Unroll

Unroll
Unroll

Unroll
Unroll

Optimization 
100New

Fast
Executable
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Motivation (2)

Compiler
-O2

Our cool  
Operating
System 

1 hour

Executable

Too slow!

Compiler
-O5

20 hours

New
Executable

We do not have that much time

Why did it happen?



Basic Idea

Unroll
Unroll

Unroll
Optimization 

100

Do we need all these optimizations for every function? 

Probably not.

Compiler writers can typically solve this problem, but how ?

1. Description of every function
2. Classification based on the description
3. Only certain optimizations for every class

Machine Learning is good for solving this kind of problems
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Initial Experiment

3X difference on 
average



Initial Experiment (2)
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Classification 
parameters

Our System

Prepare
• extract features
• modify heuristic values
• choose transformations 
• find hot methods

Gather Training Data

Compile Measure 
run time

Learn
Logistic Regression Classifier

Best 
feature 
settingsOffline

Deploy

TPO/XL Compiler
set heuristic values

Online



Data Preparation 

Three key elements:

 Feature extraction

 Heuristic values modification

 Target set of transformations

• Total # of insts
• Loop nest level
• # and % of Loads, Stores, 
Branches
• Loop characteristics
• Float and Integer # and %

• Existing XL compiler is 
missing functionality
• Extension was made to the 
existing Heuristic Context  
approach

• Unroll 
• Wandwaving
• If-conversion
• Unswitching
• CSE
• Index Splitting ….



Gather Training Data 
 Try to “cut” transformation backwards (from 

last to first)

 If run time not worse than before, 
transformation can be skipped

 Otherwise we keep it

 We do this for every hot function of every test

The main benefit is linear complexity.

Late 
Inlining

Unroll Wandwaving



Learn with Logistic Regression

Function 
Descriptions 

Best Heuristic 
Values 

Input Classifier

• Logistic Regression
• Neural Networks
• Genetic Programming

Output.hpredict
files

Compiler    +
Heuristic Values



Deployment

Online phase, for every function:

 Calculate the feature vector

 Compute the prediction

 Use this prediction as heuristic context 

Overhead is negligible
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Experiments

Benchmarks:

SPEC2000 

Others from IBM customers

Platform:

IBM server, 4 x Power5

1.9 GHz,  32GB RAM

Running AIX 5.3



Results: compilation time
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Results: execution time
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New benchmarks: compilation time

0

0.2

0.4

0.6

0.8

1

Normalized 
Time

Benchmarks

Classifier



New benchmarks: execution time
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Related Work

 Iterative Compilation

 Pan and Eigenmann

 Agakov, et al.  

 Single Heuristic Tuning

 Calder, et al. 

 Stephenson, et al. 

 Multiple Heuristic Tuning

 Cavazos, et al. 

 MILEPOST GCC



Conclusions and Future Work
 2x average compile time decrease

 Future work

 Execution time improvement

 -O5 level

 Performance Counters for better method 
description

 Other benefits

 Heuristic Context Infrastructure

 Bug Finding



Thank you

 Raul Silvera, Arie Tal, Greg Steffan, Mathew 
Zaleski

 Questions?


