Efficient Program Compilation through Machine Learning Techniques

Gennady PekhimenkoIBM Canada

Angela Demke Brown University of Toronto

Motivation

Motivation (2)

Basic Idea

Do we need all these optimizations for every function?

Probably not.

Compiler writers can typically solve this problem, but how?

- 1. **Description** of every function
- 2. Classification based on the description
- 3. Only certain optimizations for every class

Machine Learning is good for solving this kind of problems

Overview

- Motivation
- System Overview
- Experiments and Results
- Related Work
- Conclusions
- Future Work

Initial Experiment

Time, secs SPEC2000 compile time at -O3 and -qhot -O3

Initial Experiment (2)

Our System

Prepare

- extract features
- modify heuristic values
- choose transformations
- find hot methods

Gather Training Data

Online

Offline

Deploy

TPO/XL Compiler set heuristic values

Classification parameters

Learn

Logistic Regression Classifier

Data Preparation

Three key elements:

- Feature extraction
- Heuristic values modification
- Target set of transformations

- Existing XL compiler is missing functionality
- Extension was made to the existing Heuristic Context approach

- Total # of insts
- Loop nest level
- # and % of Loads, Stores, Branches
- Loop characteristics
- Float and Integer # and %

- Unroll
- Wandwaving
- If-conversion
- Unswitching
- CSE
- Index Splitting

Gather Training Data

 Try to "cut" transformation backwards (from last to first)

- If run time not worse than before, transformation can be skipped
- Otherwise we keep it
- We do this for every hot function of every test
 The main benefit is *linear* complexity.

Learn with Logistic Regression

Deployment

Online phase, for every function:

- Calculate the feature vector
- Compute the prediction
- Use this prediction as heuristic context

Overhead is negligible

Overview

- Motivation
- System Overview
- Experiments and Results
- Related Work
- Conclusions
- Future Work

Experiments

Benchmarks:

SPEC2000

Others from IBM customers

Platform:

IBM server, 4 x Power5 1.9 GHz, 32GB RAM Running AIX 5.3

Results: compilation time

Results: execution time

New benchmarks: compilation time

New benchmarks: execution time

Overview

- Motivation
- System Overview
- Experiments and Results
- Related Work
- Conclusions
- Future Work

Related Work

Iterative Compilation

- Pan and Eigenmann
- Agakov, et al.

Single Heuristic Tuning

- Calder, et al.
- Stephenson, et al.

Multiple Heuristic Tuning

- Cavazos, et al.
- MILEPOST GCC

Conclusions and Future Work

- 2x average compile time decrease
- Future work
 - Execution time improvement
 - -05 level
 - Performance Counters for better method description
- Other benefits
 - Heuristic Context Infrastructure
 - Bug Finding

Thank you

 Raul Silvera, Arie Tal, Greg Steffan, Mathew Zaleski

• Questions?