
Automatically Tuning Task-Based
Programs for Multi-core Processors

Jin Zhou
Brian Demsky

Department of Electrical Engineering and
Computer Science

University of California, Irvine

Motivation

• Recent microprocessor trends
– Number of cores increased rapidly
– Architectures vary widely

• Challenges for software development
– Parallelization is now key for performance
– Current parallel programming model: threads + locks

• Hard to develop correct and efficient parallel software
• Hard to adapt software to changes in architectures

Goals

• Automatically generate parallel implementation
• Automatically tune parallel implementation

Bamboo Compiler

Overview
Program Processor Specification

Implementation Generator

Simulation-based Evaluator

Candidate implementations

Implementation Optimizer

Leading implementations

Profile Data

Multi-core Processor

Tuned
implementations

Optimized multi-core binary

Code Generator

Optimized implementation

Example

• MonteCarlo Example
– Partitions problem into several simulations
– Executes the simulations in parallel
– Aggregates results of all simulations

Bamboo Language
• A hybrid language combines data-flow and Java

– Programs are composed of tasks
– Tasks compose with dataflow-like semantics
– Tasks contain Java-like object-oriented code internally
– Programs cannot explicitly invoke tasks
– Runtime automatically invokes tasks

• Supports standard object-oriented constructs
including methods and classes

Bamboo Language

• Flags
– Capture current role (type state) of object in computation
– Each flag captures an aspect of the object’s state
– Change as the object’s role evolves in program
– Support orthogonal classifications of objects

task startup(StartupObject s in initialstate) {
Aggregator aggr = new Aggregator(s.args[0]){merge:=true};
for(int i = 0; i < 4; i++)

Simulator sim = new Simulator(aggr){run:=true};
taskexit(s: initialstate:=false);

}
task simulate(Simulator sim in run) {

sim.runSimulate();
taskexit(sim: run:=false, submit:=true);

}
task aggregate(Aggregator aggr in merge,

Simulator sim in submit) {
boolean allprocessed = aggr.aggregateResult(sim);
if (allprocessed)

taskexit(aggr: merge:=false, finished:=true;
sim: submit:=false, finished:=true);

taskexit(sim: submit:=false, finished:=true);
}

class Aggregator {
flag merge;
flag finished;
…

}

class Simulator {
flag run;
flag submit;
flag finished;
...

}

Bamboo Program Execution

Global Flagged Object Space

Runtime
initialization StartupObjectnew

initialstate state finished stateStartupObject

Bamboo Program Execution

Global Flagged Object Space

StartupObject startup
task

execute
on

initialstate state finished stateStartupObject

Bamboo Program Execution

Global Flagged Object Space

startup
taskStartupObject

set

Aggregator

Simulator

Simulator Simulator

new

Simulator

merge state finished state

submit state

initialstate state finished stateStartupObject
Aggregator
Simulator run state finished state

Bamboo Program Execution

Global Flagged Object Space

StartupObject

Aggregator

Simulator

Simulator Simulator

Simulatorsimulate
execute

on

execute on

simulate
task

execute on
simulate

task

execute
on

simulate
task

simulate
task

merge state finished state

submit state

initialstate state finished stateStartupObject
Aggregator
Simulator run state finished state

Bamboo Program Execution

Global Flagged Object Space

StartupObject

set
Aggregator

Simulator

Simulator Simulator

Simulatorsimulate
task

simulate
task

simulate
task

simulate
taskset

set

set

merge state finished state

submit state

initialstate state finished stateStartupObject
Aggregator
Simulator run state finished state

Bamboo Program Execution

Global Flagged Object Space

aggregate
task

StartupObject

Aggregator

Simulator

Simulator Simulator

Simulator

execute on

merge state finished state
submit state

initialstate state finished stateStartupObject
Aggregator
Simulator run state finished state

Bamboo Program Execution

Global Flagged Object Space

aggregate
taskStartupObject

Aggregator

Simulator

Simulator Simulator

Simulator

set

merge state finished state

submit state

initialstate state finished stateStartupObject
Aggregator
Simulator run state finished state

Bamboo Program Execution

Global Flagged Object Space

StartupObject

Aggregator

Simulator

Simulator Simulator

Simulator
aggregate

task

execute on

merge state finished state

submit state

initialstate state finished stateStartupObject
Aggregator
Simulator run state finished state

Bamboo Program Execution

Global Flagged Object Space

StartupObject

Aggregator

Simulator

Simulator Simulator

Simulatoraggregate
task

set

merge state finished state

submit state

initialstate state finished stateStartupObject
Aggregator
Simulator run state finished state

Bamboo Program Execution

Global Flagged Object Space

aggregate
task

StartupObject

Aggregator

Simulator

Simulator Simulator

Simulator

execute on

merge state finished state

submit state

initialstate state finished stateStartupObject
Aggregator
Simulator run state finished state

Bamboo Program Execution

Global Flagged Object Space

aggregate
task

StartupObject

Aggregator

Simulator

Simulator Simulator

Simulator

set

merge state finished state

submit state

initialstate state finished stateStartupObject
Aggregator
Simulator run state finished state

Bamboo Program Execution

Global Flagged Object Space

StartupObject

Aggregator

Simulator

Simulator Simulator

Simulator
aggregate

task
execute on

merge state finished state

submit state

initialstate state finished stateStartupObject
Aggregator
Simulator run state finished state

Bamboo Program Execution

Global Flagged Object Space

StartupObject

Aggregator

Simulator

Simulator Simulator

Simulatoraggregate
task

set

merge state finished state

submit state

initialstate state finished stateStartupObject
Aggregator
Simulator run state finished state

Implementation Generation

Bamboo Compiler

Bamboo Program Processor Specification

Implementation Generator
Candidate implementations

Profile Data

Implementation Generation

• Dependence Analysis: analyzes data dependence
between tasks

• Parallelism Exploration: extracts potential parallelism

• Mapping to Cores: maps the program to real processor

Flag State Transition Graph (FSTG)

Simulator

submit

finished

aggregate:2Mcyc; 100%

run

simulate:32Mcyc; 100%

Combined Flag State Transition Graph
(CFSTG)

StartupObject

initialstate

finished
startup:3Mcyc; 100%

Simulator

run

submit

simulate:32Mcyc; 100%

finished

aggregate:2Mcyc; 100%

1
Aggregator

aggregate:2Mcyc; 75%

finished
aggregate:2Mcyc; 25%

merge

4

Number of new objects

Core Group

Initial Mapping
StartupObject

initialstate

finished
startup:3Mcyc; 100%

Simulator

run

submit

simulate:32Mcyc; 100%

finished

aggregate:2Mcyc; 100%

1

Aggregator

aggregate:2Mcyc; 75%

finished
aggregate:2Mcyc; 25%

merge

4

Preprocessing Phase

• Identifies strongly connected components (SCC) and
merges them into a single core group

• Converts CFSTG into a tree of core groups by
replicating core groups as necessary

Data Locality Rule
StartupObject

initialstate

finished
startup:3Mcyc; 100%

Simulator

41
Aggregator

aggregate:2Mcyc; 75%

finished
aggregate:2Mcyc; 25%

merge
run

Aggregator

StartupObject
1

Simulator

4

• Default rule
• Maximize data locality to

improve performance
– Minimizes inter-core

communications
– Improves cache behavior

Data Parallelization Rule
• To explore potential data

parallelism

Aggregator

StartupObject

Simulator 1

1
Simulator

Simulator

Simulator1

1

1

Aggregator

StartupObject
1

Simulator

4

StartupObject
initialstate

finished
startup:3Mcyc; 100%

Simulator

41
Aggregator

aggregate:2Mcyc; 75%

finished
aggregate:2Mcyc; 25%

merge
run

Rate Matching Rule
• If the producer executes

multiple times in a cycle,
how many consumers are
required?

• Match two rates to estimate
the number of consumers
– Peak new object creation rate
– Object consumption rate

Producer

…

init
produce

produce

Producer

Consumer

Consumer

…

Consumer
run

…

Mapping to Processor

• Constraint: limited cores

Core 1 Core 2

• Map CFSTG core groups to physical cores

• Extended CFSTG

Aggregator

StartupObject

Simulator 1

1
Simulator

Simulator

Simulator1

1

1

Mapping to Cores
• One possible mapping

Aggregator

StartupObject

Simulator 1

1
Simulator

Simulator

Simulator1

1

1

Core 2

Core 1

Mapping to Cores
• Isomorphic mappings: have same performance

• Backtracking-based search: to generate non-isomorphic
implementations

Aggregator

StartupObject

Simulator 1

1
Simulator

Simulator

Simulator1

1

1

Aggregator

StartupObject

Simulator 1

1
Simulator

Simulator

Simulator1

1

1

Core 2

Core 1
Core 1

Core 2

Implementation Generation

Bamboo Compiler

Simulation-based Evaluator

Candidate implementations

Implementation Optimizer

Leading implementations

Tuned
implementations

Optimized implementation

Simulation-Based Evaluation
• To select the best candidate implementation
• High-level simulation

– Does NOT actually execute the program
– Constructs abstract execution trace with similar statistics
– Compare the execution time or throughput and core usage

Simulator
Core

Task Task
Core

Task Task

Simulation-Based Evaluation
• Markov model

– Built from profile data
– For each task estimates:

• The destination state
• The execution time
• A count of each type of new

objects

StartupObject

initialstate

fnished
startup:3Mcyc; 100%

1
Aggregator

1
Simulator

Simulator

Simulator

Simulator

1

1

1

aggregate:2Mcyc; 75%
aggregate:2Mcyc; 25%

merge

run

finished

submit
simulate:32Mcyc; 100%

finished
aggregate:2Mcyc; 100%

Simulated Execution Trace
core 0 core 1

0 StartupObject(1)

3 Aggregator(1), Simulator (4)
4 Simulator(1)

transfer a Simulator

35 Aggregator(1), Simulator(1), Simulator(2)
36 Simulator(1)

67 Aggregator(1), Simulator(3), Simulator(1)

37 transfer a Simulator

99 Aggregator(1), Simulator(4)

101 Aggregator(1), Simulator(3)

103 Aggregator(1), Simulator(2)

105 Aggregator(1), Simulator(1)

107 empty

Aggregator(1), Simulator(2), Simulator(2)

Aggregator(1), Simulator(4)

1 Aggregator in the initial state and
4 Simulators in the submit state

Problem of Exhaustive Searching

• The search space expands quickly
• Exhaustive search is not feasible for complicated

applications

Number of CFSTG Core Groups Number of Cores Number of Candidates

32 16 > 6,000
64 32 > 14,000,000

Random Search?
• Very low chance to find the best implementation

Chance to find the best implementation

Developer Optimization Process
• Create an initial implementation
• Evaluate it and identify performance bottlenecks
• Heuristically develop new implementations to

remove bottlenecks
• Iteratively repeat evaluation and optimization

Directed Simulated Annealing (DSA)

Directed Simulated Annealing

Randomly generate
candidate implementations

High-level Simulator

As-built Critical Path Analysis

Leading candidate
implementations

Implementation Generator

Potential bottlenecks

Tuned candidate implementation

New candidate
implementations

As-Built Critical Path (ABCP)

Aggregator

StartupObject

Simulator

1
1

Simulator

Simulator

Simulator
1

1
1

• Provide post-mortem analysis of project management
core 0 core 1

0 StartupObject(1)

3 Aggregator(1), Simulator (4)
4 Simulator(1)

transfer a Simulator

35 Aggregator(1), Simulator(1), Simulator(2)
36 Simulator(1)

67 Aggregator(1), Simulator(3), Simulator(1)

37 transfer a Simulator

99 Aggregator(1), Simulator(4)

101 Aggregator(1), Simulator(3)

103 Aggregator(1), Simulator(2)

105 Aggregator(1), Simulator(1)

107 empty

Aggregator(1), Simulator(2), Simulator(2)

As-Built Critical Path Analysis

• Compute the time when a
task invocation’s data
dependences are resolved

core 0 core 1

0 StartupObject(1)

3 Aggregator(1), Simulator (4)
4 Simulator(1)

transfer a Simulator

35 Aggregator(1), Simulator(1), Simulator(2)
36 Simulator(1)

67 Aggregator(1), Simulator(3), Simulator(1)

37 transfer a Simulator

99 Aggregator(1), Simulator(4)

101 Aggregator(1), Simulator(3)

103 Aggregator(1), Simulator(2)

105 Aggregator(1), Simulator(1)

107 empty

Aggregator(1), Simulator(2), Simulator(2)

Waiting Task Optimization

• Waiting tasks:
– Tasks whose real invocation time is later than the time when all its

data dependences are resolved
– Delayed because of resource conflicts
– Bottlenecks, remove them from ABCP

• Optimization
– Migrate waiting tasks to spare cores
– Shorten the ABCP to improve performance

Critical Task Optimization
• There may not exist spare cores to move waiting tasks to
• Identify critical tasks: tasks that produce data that is

consumed immediately
• Attempt to execute critical tasks as early as possible
• Migrate other tasks which blocked some critical task to

other cores
core 0 core 1

35 Aggregator(1), Simulator(1), Simulator(2)
36 Simulator(1)

67 Aggregator(1), Simulator(3), Simulator(1)

99 Aggregator(1), Simulator(4)

101 Aggregator(1), Simulator(3)

Simulator(2)

1

2

Code Generator

Bamboo Compiler
Optimized multi-core binary

Code Generator

Optimized implementation

Intermediate C code

Evaluation

• MIT RAW simulator
– Cycle accurate simulator configured for 16 cores
– RAW chip: tiled chip, shared memory, on-chip network

• Benchmarks:
– Series: Java Grande benchmark suite
– MonteCarlo: Java Grande benchmark suite
– FilterBank: StreamIt benchmark suite
– Fractal

Speedups on 16 cores

Benchmark Clock Cycles (106 cyc) Speedup to 1-
Core Bamboo1-Core

Bamboo
16-Core
Bamboo

Series 26.4 1.8 14.7
Fractal 38.4 3.3 11.6

MonteCarlo 191.7 19.0 10.1
FilterBank 91.2 6.7 13.6

• Successfully generated implementations with good
performance

Comparison to Hand-Written C Code
Benchmark Clock Cycles (106 cyc) Speedup

to 1-Core
C

Overhead of
Bamboo1-Core C 1-Core

Bamboo
16-Core
Bamboo

Series 25.0 26.4 1.8 13.9 5.6%
Fractal 36.2 38.4 3.3 11.0 6.1%

MonteCarlo 138.8 191.7 19.0 7.3 38.1%
FilterBank 71.1 91.2 6.7 10.6 28.3%

• Overhead of Bamboo:
– Small for Series and Fractal
– Larger overhead for MonteCarlo and FilterBank:

• GCC cannot reorder instructions to fill floating-point delay
slots for Bamboo implementations due to imprecise alias results

• Easy to add alias information to facilitate the reordering

Comparison of Estimation and Real Execution

• The simulation estimations are close to the real
execution time

Benchmark 1-Core Bamboo Binary 16-Core Bamboo Binary
Clock Cycles (106 cyc) Error Clock Cycles (106 cyc) Error

Estimation Real Estimation Real

Series 26.3 26.4 0.38% 1.7 1.8 5.56%
Fractal 38.4 38.4 0% 3.1 3.3 6.06%

MonteCarlo 191.0 191.7 0.37% 18.3 19.0 3.68%
FilterBank 91.2 91.2 0% 6.5 6.7 2.99%

Optimality of Directed Simulated Annealing

Fractal

MonteCarlo

FilterBank

Generality of Synthesized Implementation

• The speedups of both 16-core Bamboo versions are
similar

• Successfully generate a sophisticated
implementation utilizing pipelining for MonteCarlo

Benchmark Profile_original, Input_double Profile_double, Input_double
Clock Cycles (106 cyc) Speedup Clock Cycles (106 cyc) Speedup
1-Core 16-Core 16-Core

Series 54.2 3.6 15.1 3.6 15.1
Fractal 76.6 6.5 11.8 6.5 11.8

MonteCarlo 383.2 37.8 10.1 35.7 10.7
FilterBank 182.3 13.3 13.7 13.3 13.7

Related Work
• Data-flow and streaming languages:

– Bamboo relaxes typical restrictions in these models to
permit:

• Flexible mutation of data structures
• Data structures of arbitrarily complex constructs

– Bamboo supports applications that non-deterministically
access data

• Tuple-space language: compiler cannot automatically
create multiple instantiations to utilize multiple cores

• Self-tuning libraries: mostly address specific
computations

Conclusion
• We developed a new approach to automatically tune

task-based programs for multi-core processors
– Automatically generate parallel implementations
– Automatically tune according to specific architecture

• The approach was evaluated on MIT RAW simulator
– Successfully generated implementations with good

performance
– Successfully generated a sophisticated implementation

utilizing pipelining
• Can be extended to the broader context of traditional

programming languages

Thank you!

