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Motivation

• Recent microprocessor trends
– Number of cores increased rapidly
– Architectures vary widely

• Challenges for software development
– Parallelization is now key for performance
– Current parallel programming model: threads + locks

• Hard to develop correct and efficient parallel software
• Hard to adapt software to changes in architectures



Goals

• Automatically generate parallel implementation 
• Automatically tune parallel implementation
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Example

• MonteCarlo Example
– Partitions problem into several simulations
– Executes the simulations in parallel
– Aggregates results of all simulations



Bamboo Language
• A hybrid language combines data-flow and Java

– Programs are composed of tasks
– Tasks compose with dataflow-like semantics
– Tasks contain Java-like object-oriented code internally
– Programs cannot explicitly invoke tasks
– Runtime automatically invokes tasks

• Supports standard object-oriented constructs 
including methods and classes



Bamboo Language

• Flags
– Capture current role (type state) of object in computation
– Each flag captures an aspect of the object’s state
– Change as the object’s role evolves in program
– Support orthogonal classifications of objects



task startup(StartupObject s in initialstate) {
Aggregator aggr = new Aggregator(s.args[0]){merge:=true};
for(int i = 0; i < 4; i++) 

Simulator sim = new Simulator(aggr){run:=true};
taskexit(s: initialstate:=false);

}
task simulate(Simulator sim in run) {

sim.runSimulate();
taskexit(sim: run:=false, submit:=true);

} 
task aggregate(Aggregator aggr in merge, 

Simulator sim in submit) {
boolean allprocessed = aggr.aggregateResult(sim);
if (allprocessed) 

taskexit(aggr: merge:=false, finished:=true; 
sim: submit:=false, finished:=true);

taskexit(sim: submit:=false, finished:=true);
} 

class Aggregator {
flag merge;
flag finished;
…

}

class Simulator { 
flag run; 
flag submit; 
flag finished;
... 

} 
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Implementation Generation

• Dependence Analysis: analyzes data dependence 
between tasks

• Parallelism Exploration: extracts potential parallelism

• Mapping to Cores: maps the program to real processor



Flag State Transition Graph (FSTG)
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Combined Flag State Transition Graph 
(CFSTG)
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Core Group

Initial Mapping
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Preprocessing Phase

• Identifies strongly connected components (SCC) and 
merges them into a single core group

• Converts CFSTG into a tree of core groups by 
replicating core groups as necessary



Data Locality Rule
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• Default rule
• Maximize data locality to 

improve performance
– Minimizes inter-core 

communications
– Improves cache behavior



Data Parallelization Rule
• To explore potential data 

parallelism
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Rate Matching Rule
• If the producer executes 

multiple times in a cycle, 
how many consumers are 
required?

• Match two rates to estimate 
the number of consumers
– Peak new object creation rate
– Object consumption rate
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Mapping to Processor

• Constraint: limited cores

Core 1 Core 2

• Map CFSTG core groups to physical cores

• Extended CFSTG
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Mapping to Cores
• One possible mapping
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Mapping to Cores
• Isomorphic mappings: have same performance

• Backtracking-based search: to generate non-isomorphic 
implementations
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Simulation-Based Evaluation
• To select the best candidate implementation
• High-level simulation

– Does NOT actually execute the program
– Constructs abstract execution trace with similar statistics
– Compare the execution time or throughput and core usage
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Simulation-Based Evaluation
• Markov model

– Built from profile data
– For each task estimates:

• The destination state
• The execution time
• A count of each type of new 

objects
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Simulated Execution Trace
core 0 core 1
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1 Aggregator in the initial state and 
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Problem of Exhaustive Searching

• The search space expands quickly
• Exhaustive search is not feasible for complicated 

applications

Number of CFSTG Core Groups Number of Cores Number of Candidates

32 16 > 6,000
64 32 > 14,000,000



Random Search?
• Very low chance to find the best implementation

Chance to find the best implementation



Developer Optimization Process
• Create an initial implementation
• Evaluate it and identify performance bottlenecks
• Heuristically develop new implementations to 

remove bottlenecks
• Iteratively repeat evaluation and optimization



Directed Simulated Annealing (DSA)
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As-Built Critical Path (ABCP)
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• Provide post-mortem analysis of project management
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As-Built Critical Path Analysis

• Compute the time when a 
task invocation’s data 
dependences are resolved
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Waiting Task Optimization

• Waiting tasks: 
– Tasks whose real invocation time is later than the time when all its 

data dependences are resolved
– Delayed because of resource conflicts
– Bottlenecks, remove them from ABCP

• Optimization
– Migrate waiting tasks to spare cores
– Shorten the ABCP to improve performance



Critical Task Optimization
• There may not exist spare cores to move waiting tasks to
• Identify critical tasks: tasks that produce data that is 

consumed immediately
• Attempt to execute critical tasks as early as possible
• Migrate other tasks which blocked some critical task to 

other cores
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Code Generator
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Evaluation

• MIT RAW simulator
– Cycle accurate simulator configured for 16 cores
– RAW chip: tiled chip, shared memory, on-chip network

• Benchmarks:
– Series: Java Grande benchmark  suite
– MonteCarlo: Java Grande benchmark suite
– FilterBank: StreamIt benchmark suite
– Fractal



Speedups on 16 cores

Benchmark Clock Cycles (106 cyc) Speedup to 1-
Core Bamboo1-Core 

Bamboo
16-Core 
Bamboo

Series 26.4 1.8 14.7
Fractal 38.4 3.3 11.6

MonteCarlo 191.7 19.0 10.1
FilterBank 91.2 6.7 13.6

• Successfully generated implementations with good 
performance



Comparison to Hand-Written C Code
Benchmark Clock Cycles (106 cyc) Speedup 

to 1-Core 
C

Overhead of 
Bamboo1-Core C 1-Core 

Bamboo
16-Core 
Bamboo

Series 25.0 26.4 1.8 13.9 5.6%
Fractal 36.2 38.4 3.3 11.0 6.1%

MonteCarlo 138.8 191.7 19.0 7.3 38.1%
FilterBank 71.1 91.2 6.7 10.6 28.3%

• Overhead of Bamboo:
– Small for Series and Fractal
– Larger overhead for MonteCarlo and FilterBank:

• GCC cannot reorder instructions to fill floating-point delay 
slots for Bamboo implementations due to imprecise alias results

• Easy to add alias information to facilitate the reordering



Comparison of Estimation and Real Execution

• The simulation estimations are close to the real 
execution time

Benchmark 1-Core Bamboo Binary 16-Core Bamboo Binary
Clock Cycles (106 cyc) Error Clock Cycles (106 cyc) Error

Estimation Real Estimation Real

Series 26.3 26.4 0.38% 1.7 1.8 5.56%
Fractal 38.4 38.4 0% 3.1 3.3 6.06%

MonteCarlo 191.0 191.7 0.37% 18.3 19.0 3.68%
FilterBank 91.2 91.2 0% 6.5 6.7 2.99%



Optimality of Directed Simulated Annealing
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Generality of Synthesized Implementation

• The speedups of both 16-core Bamboo versions are 
similar

• Successfully generate a sophisticated 
implementation utilizing pipelining for MonteCarlo

Benchmark Profile_original, Input_double Profile_double, Input_double
Clock Cycles (106 cyc) Speedup Clock Cycles (106 cyc) Speedup
1-Core 16-Core 16-Core

Series 54.2 3.6 15.1 3.6 15.1
Fractal 76.6 6.5 11.8 6.5 11.8

MonteCarlo 383.2 37.8 10.1 35.7 10.7
FilterBank 182.3 13.3 13.7 13.3 13.7



Related Work
• Data-flow and streaming languages: 

– Bamboo relaxes typical restrictions in these models to 
permit:

• Flexible mutation of data structures
• Data structures of arbitrarily complex constructs

– Bamboo supports applications that non-deterministically 
access data

• Tuple-space language: compiler cannot automatically 
create multiple instantiations to utilize multiple cores

• Self-tuning libraries: mostly address specific 
computations



Conclusion
• We developed a new approach to automatically tune 

task-based programs for multi-core processors
– Automatically generate parallel implementations
– Automatically tune according to specific architecture

• The approach was evaluated on MIT RAW simulator
– Successfully generated implementations with good 

performance
– Successfully generated a sophisticated implementation 

utilizing pipelining
• Can be extended to the broader context of traditional 

programming languages 



Thank you!


