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Motivation

Computational Chemistry application performance
depends on

e Input parameter combinations
e Underlying hardware configuration

Adaptation to varying system conditions is required
for consistently good performance.

Application performance analysis required to
understand effect of input parameters and system
configuration on application performance.

Analysis helps to design a tuning strategy for such
applications.



introduction

Ab initio Quantum Chemistry Applications

Studies properties of molecules (energy, geometry etc)
Based on Schrodinger equation.

Schrodinger equation can be solved (only)
approximately

e semi empirical - uses experimental measurements
e ab-initio - collection of mathematical methods

Other scientific applications based on ab-initio
methods includes GAMESS, NWCHEM, MOLPRO
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Introduction

GAMESS

General Atomic and Molecular Electronic Structure
System

is generic ab initio quantum chemistry calculation
package

calculates wide range of Hartree-Fock (HF) wave
functions (RHF, ROHF, and UHF)

uses Self-Consistent-Field (SCF) method (with direct
and conventional implementations)

e direct - recomputes integrals on-the-fly for each
iteration (memory and CPU intensive)

e conventional - computes integrals once, stores on
disk, and reuses for each iteration (I/O intensive)
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Computation Process
The initial stage The iterative stage The post-HF stage
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Small, can be stored on
disk or in memory.

Can be huge,
affected by the size
of basis set

B i e R

The two electron integrals
are stored on disk (conventional)
or computed on the fly (direct).
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Introduction

Two patterns of execution (direct and conventional)
favor different computational resources

Need for efficient execution of GAMESS jobs and
analysis of system resources: memory, I/0,
architecture (SMP)

Incorporating self-scheduling into GAMESS or manual
analysis by the user is infeasible

Modern schedulers (PBS, LoadLeveler, LSF, etc..)
incapable to “peek” into application’s execution

Integrate GAMESS with application level
middleware (NICAN)
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Introduction
NICAN

Network Information Conveyer and Application
Notification

Decouples process of analyzing system information
from application execution

Enables adaptation functionality for distributed
applications

Requires minor changes to adapting application
Lightweight module-driven middleware
e CPULoad, Latency, PacketProbe, etc.
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Introduction
NICAN

NICAN Interface F: Uses Applicaticn Prccess
Creates Provides Modifies

V W

Invckes
Module Manager >+ Adaptation Handler

Controls

Mcdule 1 .. Module n
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~ Introduction

GAMESS-NICAN Integration model

GAMESS-Check NICAN GAMESS
- s
module(S) ; NICAN _Initialize()
Memory l 3 v
module(G) il Calculation
Daemon <__> Manager <¢—»| SCF Iterations
module(G) :
Disk I/0 | '
module(G) | NICAN_Finilize
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Introduction

Dynamic Algorithm Selection

Assumes real-world scenario: GAMESS calculations
are run in multi-user/application environment

Examples: Disk I/O congestion may appear when an

external application runs on the same SMP node as
GAMESS

Highlight of decision making process
e Collect data

e Compare current iteration performance to past and
make decision

e Switch algorithm
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Introduction
Adaptation Process

Check Iteration ||

Begin Iteration - -
— | = Performace
v A% > Controll -
Ll P B f)er > Eleteaatnt
7 Adapt” | Resources
; Ve ‘ | Check peer
HF Calciulatlon i Manager GAMESS jobs
End Iteration 3
AAAAAAAAAAANANAAAAANANANNNNNNAANAN ; ,,,,,,,,,,,,,,,,,,,,,,,,,

Very few lines of GAMESS code change
Low overhead by Manager
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Reason to modify this adaptation scheme

Algorithm effective in improving performance of
GAMESS

[teration time data collected on-the-fly

Need to include other parameters in the adaptation
algorithm in order to reflect various scenarios that
affect the application

Hence collect application performance data on
different architectures and then augment the existing
adaptation scheme.



*Methodology e

Application Experiment Trial

Application characteristics
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System characteristics
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Methodology
Application Workload

Choose application workload to include different sets
of molecules.

e Molecules need to represent real world usage.

* Two different sets of molecules chosen for testing

» First set (Hiro molecules) of 7 molecules of varying
molecular structure

e Second set of 6 benzene molecules with very similar
structure

e Molecules represent fundamental aromatic systems,
models used for DNA stacking and protein folding and
are part of carbon nano materials.



P
Methodology

Architectures

Choose different architectures on which the
application can be tested.

e Franklin : CRAY-XT cluster provided by NERSC

e Sun T2 Niagara Machine: Single chip 8 cores. Each core
capable of running 8 threads simultaneously.

e Ames Lab SMP cluster “Borges" : 4 nodes. Each node
contains two dual-core 2.0GHZ Xeon “Woodcrest"
CPUs. Gigabit Ethernet interconnect between nodes.



Methodology

Performance Data and Tools

Decide performance data to be collected
e Overall time spent in Computation
e Overall time spent in 10

e Overall time spent in Communication

Choose appropriate profiling tools to get the
performance data.

e TAU (Tuning and Analysis Utility)
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Performance Analysis
Performance results shown only for np-dimer and C6o0
molecules.

Results collected for input combinations of MPo, MP2,
Direct and Conventional.



Performance Analysis

np-dimer Borges
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Performance Analysis
np-dimer Franklin
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Performance Analysis

np-dimer Niagara T2
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Performance Analysis
C60 Borges
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Performance Analysis

C60 Franklin
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Performance Analysis
C60 T2 Niagara
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Issues in developing Tuning Strategy

MP2 calculations take nearly 3 times more time to
complete than MPo. There are other Post-HF
computations. How can we make a trade off between
accuracy and efficiency ?

Communication cost increases when number of GAMESS
processes on a single node is increased. Can we distribute
the processes amongst different nodes ? How can the
appﬁcation know the best node-processor combination on
a particular machine ?

Are there input combinations that can be avoided based on
the amount of time taken to compute results ?

Can we use analysis results derived from one molecule for
another ?
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Issues in developing tuning strategy

For a single molecule like np-dimer, for 4 different
input parameter combinations, we obtained
performance data on 3 architectures for at least 8
different node-processor combinations.

96 performance data sets for a single molecule.
Need to store this data in a database for analysis.
Dimension reduction needed for usage with NICAN



‘Database assisted adaptation-archite ure

Data
Collection
(C program)
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Features implemented

Memory usage check for MP2 computations

Modification of input processor-node combination for
better performance.

Scalability analysis program implemented

Improvement of about 8-9% over the existing NICAN
implementation.
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Conclusions and Future Work

Huge amounts of performance data must be processed and
organized.

More detailed performance data can be used. Example: We can
get Computation time, IO time and Communication time for
specific execution phases.

Other performance data like cache performance data can be
added to the database and integrated with the tuning
mechanism.

Other scenarios need to be added to the tuning mechanism.

Need to integrate tools like PerfDMF and PerfExplorer to
manage and analyse the performance data.

Use analysis techniques like machine learning.
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Questions



