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Motivation
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For a given task, there may be multiple algorithms available, each with
its own set of tunable parameters.

Choice of optimal algorithm may depend on runtime context:
Input
Hardware
System load

Autotune algorithmic choice at runtime



Motivation

1 2017-06-01

For a given task, there may be multiple algorithms available, each with
its own set of tunable parameters.

Choice of optimal algorithm may depend on runtime context:
Input
Hardware
System load

Autotune algorithmic choice at runtime



Motivation

1 2017-06-01

For a given task, there may be multiple algorithms available, each with
its own set of tunable parameters.

Choice of optimal algorithm may depend on runtime context:
Input
Hardware
System load

Autotune algorithmic choice at runtime



Autotuning – The Basics
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Search space Ta for an algorithm a with tuning parameters τa,j :

Ta = τa,0 × · · · × τa,J

A configuration Ca ∈ Ta is measured by the timing function ma. The
context K describes external influences (hardware, input data).

Coptimal,a = arg min
Ca

ma(Ca,K )
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Online-Autotuning performs tuning at
application runtime.

Minimize overall application runtime.
Minimize sum of tuning iterations
∑i ma(Ci ).
Each evaluated configuration Ci has
to be amortized.
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Choose algorithm A, B or C in the current con-
text.

Algorithms have their own search spaces TA, TB
and TC.

Finding Coptimal,A, Coptimal,B and Coptimal,C be-
fore choosing the optimal algorithm is not feasi-
ble in an online scenario.
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Autotune search spaces concurrently.

Exploit the only degree of freedom:
Order of evaluation

Amortize each sampled configuration.
Choose near-optimal configurations, ignore bad
configurations.
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Algorithmic Choice
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Tuning problem with algorithmic choice:

Copt = arg min
A∈A,C∈TA

mA(C)

Evaluation in two phases:
1 Choose algorithm A
2 Perform tuning iteration on TA

Have to manage state of all search spaces TA.



Nominal Parameters
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Algorithmic Choice introduces nominal tuning parameters into our
scenario.

Class Distinguishing Property Example

Nominal Labels Choice of algorithm
Ordinal Order Choice of buffer sizes from

a set small, medium, large
Interval Distance Percentage of a maximum

buffer size
Ratio Natural Zero, Equality of Ra-

tios
Number of threads

Known tuning strategies that rely on a measure of direction or distance
are not applicable for nominal parameters.



Algorithmic Choice – Strategies
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Strategies for algorithmic choice:
ε-Greedy
Gradient Weighted
Optimum Weighted
Sliding Window Area-Under-The-Curve



ε-Greedy Strategy
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The ε-Greedy strategy is a parameterized probabilistic method.

Probability Action
1− ε currently best performing algorithm

ε random algorithm with uniform probability

Parameter ε controls the explorative behavior. We used 0.05, 0.1 and 0.2
as values.



Weighted Probabilistic Methods
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Choose algorithm A with probability proportional to weight wA. Weights
are selected by the concrete strategy.

Gradient Weighted
Optimum Weighted
Sliding Window Area-Under-The-Curve

The selection probability of algorithm A is then PA = wA
∑A′∈A wA′

> 0.



Gradient Weighted Strategy
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Choose algorithm A with probability proportional to weight wA, based on
the gradient GA observed in the performance of the latest iteration
window [i0, i1].

GA =

1
mA,i1

− 1
mA,i0

i1−i0

wA =

{
GA + 2 if GA ≥ −1
− 1

GA

We use an iteration window of 16.



Optimum Weighted Strategy
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Choose algorithm A with probability proportional to weight wA, based on
the current optimal performance.

wA = max
i

1
mA,i



Sliding Window Area-Under-The-Curve Strategy
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The Sliding Window AUC strategy is again a probabilistic method, which
assigns a weight wA based on the area under the algorithm’s
performance curve within a sliding iteration window [i0, i1].

wA =
∑i1

i=i0
1

mA,i

i1 − i0

We use a window size of 16.



Evaluation
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Two case studies:
Parallel String Matching

Seven algorithms and one heuristic.
No tuning parameters besides algorithmic choice.

Raytracing
Four data structures.
Tuning parameters for tree bounds and construction heuristics.



Parallel String Matching
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Parallel versions of:
Boyer-Moore
Knuth-Morris-Pratt
ShiftOr
Hash3
SSEF
EBOM, FSBNDM
Hybrid

Text corpora: bible and the human genome.

The query pattern and text are supplied at program invocation. Any
precomputation is part of the algorithms runtime.



Parallel String Matching
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Figure: Performance of the parallel string matching algorithms
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Figure: Median performance in individual iterations of all strategies
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Raytracing
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Two phase raytracing application.
Iterate over 100 frames:

1 Construct SAH kD-tree.
2 Cast rays, query kD-tree.

Four different datastructes:
Inplace
Wald-Havran
Nested
Lazy

Each datastructure has their own tuning space with three or four
parameters.
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Figure: Tuning timeline of all four algorithms. The plot shows the average time
taken in every iteration.
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Conclusion
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The ε-Greedy strategy is able to achieve the fastest convergence. The
remaining strategies achieve convergence as well but at a slower rate.

Future work will generalize from the problem of algorithmic choice
towards arbitrary nominal parameters. This requires combining the
techniques presented here to achieve maximum convergence speed
while defending against local extrema.



Online-Autotuning in the Presence of
Algorithmic Choice
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Thank you for your attention.

https://code.ipd.kit.edu/pfaffe/libtuning

https://code.ipd.kit.edu/pfaffe/libtuning

