
0 2017-06-01

KIT - Institute of Program Structures and Data Organization

Online-Autotuning in the Presence of Algorithmic Choice

Philip Pfaffe, Martin Tillmann, Sigmar Walter, and Walter F. Tichy

KIT – The Research University in the Helmholtz Association www.kit.edu



Motivation

1 2017-06-01

For a given task, there may be multiple algorithms available, each with
its own set of tunable parameters.

Choice of optimal algorithm may depend on runtime context:
Input
Hardware
System load

Autotune algorithmic choice at runtime



Motivation

1 2017-06-01

For a given task, there may be multiple algorithms available, each with
its own set of tunable parameters.

Choice of optimal algorithm may depend on runtime context:
Input
Hardware
System load

Autotune algorithmic choice at runtime



Motivation

1 2017-06-01

For a given task, there may be multiple algorithms available, each with
its own set of tunable parameters.

Choice of optimal algorithm may depend on runtime context:
Input
Hardware
System load

Autotune algorithmic choice at runtime



Autotuning – The Basics

2 2017-06-01

Search space Ta for an algorithm a with tuning parameters τa,j :

Ta = τa,0 × · · · × τa,J

A configuration Ca ∈ Ta is measured by the timing function ma. The
context K describes external influences (hardware, input data).

Coptimal,a = arg min
Ca

ma(Ca,K )



Autotuning – The Basics

2 2017-06-01

Search space Ta for an algorithm a with tuning parameters τa,j :

Ta = τa,0 × · · · × τa,J

A configuration Ca ∈ Ta is measured by the timing function ma. The
context K describes external influences (hardware, input data).

Coptimal,a = arg min
Ca

ma(Ca,K )



The Online-Autotuning Scenario

3 2017-06-01

Online-Autotuning performs tuning at
application runtime.

Minimize overall application runtime.
Minimize sum of tuning iterations
∑i ma(Ci ).
Each evaluated configuration Ci has
to be amortized.



The Online-Autotuning Scenario

3 2017-06-01

Online-Autotuning performs tuning at
application runtime.

Minimize overall application runtime.
Minimize sum of tuning iterations
∑i ma(Ci ).
Each evaluated configuration Ci has
to be amortized.



Algorithmic Choice

4 2017-06-01

Choose algorithm A, B or C in the current con-
text.

Algorithms have their own search spaces TA, TB
and TC.

Finding Coptimal,A, Coptimal,B and Coptimal,C be-
fore choosing the optimal algorithm is not feasi-
ble in an online scenario.



Algorithmic Choice

4 2017-06-01

Choose algorithm A, B or C in the current con-
text.

Algorithms have their own search spaces TA, TB
and TC.

Finding Coptimal,A, Coptimal,B and Coptimal,C be-
fore choosing the optimal algorithm is not feasi-
ble in an online scenario.



Algorithmic Choice

4 2017-06-01

Choose algorithm A, B or C in the current con-
text.

Algorithms have their own search spaces TA, TB
and TC.

Finding Coptimal,A, Coptimal,B and Coptimal,C be-
fore choosing the optimal algorithm is not feasi-
ble in an online scenario.



Algorithmic Choice

5 2017-06-01

Autotune search spaces concurrently.

Exploit the only degree of freedom:
Order of evaluation

Amortize each sampled configuration.
Choose near-optimal configurations, ignore bad
configurations.



Algorithmic Choice

5 2017-06-01

Autotune search spaces concurrently.

Exploit the only degree of freedom:
Order of evaluation

Amortize each sampled configuration.
Choose near-optimal configurations, ignore bad
configurations.



Algorithmic Choice

6 2017-06-01

Tuning problem with algorithmic choice:

Copt = arg min
A∈A,C∈TA

mA(C)

Evaluation in two phases:
1 Choose algorithm A
2 Perform tuning iteration on TA

Have to manage state of all search spaces TA.



Nominal Parameters

7 2017-06-01

Algorithmic Choice introduces nominal tuning parameters into our
scenario.

Class Distinguishing Property Example

Nominal Labels Choice of algorithm
Ordinal Order Choice of buffer sizes from

a set small, medium, large
Interval Distance Percentage of a maximum

buffer size
Ratio Natural Zero, Equality of Ra-

tios
Number of threads

Known tuning strategies that rely on a measure of direction or distance
are not applicable for nominal parameters.



Algorithmic Choice – Strategies

8 2017-06-01

Strategies for algorithmic choice:
ε-Greedy
Gradient Weighted
Optimum Weighted
Sliding Window Area-Under-The-Curve



ε-Greedy Strategy

9 2017-06-01

The ε-Greedy strategy is a parameterized probabilistic method.

Probability Action
1− ε currently best performing algorithm

ε random algorithm with uniform probability

Parameter ε controls the explorative behavior. We used 0.05, 0.1 and 0.2
as values.



Weighted Probabilistic Methods

10 2017-06-01

Choose algorithm A with probability proportional to weight wA. Weights
are selected by the concrete strategy.

Gradient Weighted
Optimum Weighted
Sliding Window Area-Under-The-Curve

The selection probability of algorithm A is then PA = wA
∑A′∈A wA′

> 0.



Gradient Weighted Strategy

11 2017-06-01

Choose algorithm A with probability proportional to weight wA, based on
the gradient GA observed in the performance of the latest iteration
window [i0, i1].

GA =

1
mA,i1

− 1
mA,i0

i1−i0

wA =

{
GA + 2 if GA ≥ −1
− 1

GA

We use an iteration window of 16.



Optimum Weighted Strategy

12 2017-06-01

Choose algorithm A with probability proportional to weight wA, based on
the current optimal performance.

wA = max
i

1
mA,i



Sliding Window Area-Under-The-Curve Strategy

13 2017-06-01

The Sliding Window AUC strategy is again a probabilistic method, which
assigns a weight wA based on the area under the algorithm’s
performance curve within a sliding iteration window [i0, i1].

wA =
∑i1

i=i0
1

mA,i

i1 − i0

We use a window size of 16.



Evaluation

14 2017-06-01

Two case studies:
Parallel String Matching

Seven algorithms and one heuristic.
No tuning parameters besides algorithmic choice.

Raytracing
Four data structures.
Tuning parameters for tree bounds and construction heuristics.



Parallel String Matching

15 2017-06-01

Parallel versions of:
Boyer-Moore
Knuth-Morris-Pratt
ShiftOr
Hash3
SSEF
EBOM, FSBNDM
Hybrid

Text corpora: bible and the human genome.

The query pattern and text are supplied at program invocation. Any
precomputation is part of the algorithms runtime.



Parallel String Matching

16 2017-06-01

0

50

100

150

Boyer-Moore EBOM
FSBNDM Hash3

Hybrid

Knuth-Morris-Pratt
ShiftOr

SSEF

tim
e 

[m
s]

Figure: Performance of the parallel string matching algorithms



Parallel String Matching

17 2017-06-01

0

50

100

150

0 5 10 15 20 25

iteration

tim
e 

[m
s]

strategies e-Greedy (10%)
e-Greedy (20%)

e-Greedy (5%)
Gradient Weighted

Optimum Weighted
Sliding-Window AUC

Figure: Median performance in individual iterations of all strategies



Parallel String Matching

18 2017-06-01

0

25

50

75

Boyer-Moore EBOM FSBNDM Hash3 Hybrid Knuth-Morris-Pratt ShiftOr SSEF

algorithm

co
un

t

strategies e-Greedy (10%)
e-Greedy (20%)

e-Greedy (5%)
Gradient Weighted

Optimum Weighted
Sliding-Window AUC

Figure: Frequency of all algorithms being chosen by the strategies



Raytracing

19 2017-06-01

Two phase raytracing application.
Iterate over 100 frames:

1 Construct SAH kD-tree.
2 Cast rays, query kD-tree.

Four different datastructes:
Inplace
Wald-Havran
Nested
Lazy

Each datastructure has their own tuning space with three or four
parameters.



Raytracing

20 2017-06-01

1200

1400

1600

1800

2000

2200

0 25 50 75 100

iteration

tim
e 

[m
s]

strategies Inplace Lazy Nested Wald-Havran

Figure: Tuning timeline of all four algorithms. The plot shows the average time
taken in every iteration.



Raytracing

21 2017-06-01

1200

1400

1600

1800

0 25 50 75 100

iteration

tim
e 

[m
s]

strategies e-Greedy (10%)
e-Greedy (20%)

e-Greedy (5%)
Gradient Weighted

Optimum Weighted
Sliding-Window AUC

Figure: Median performance in individual iterations of all strategies



Raytracing

22 2017-06-01

0

25

50

75

Inplace Lazy Nested Wald-Havran

algorithm

co
un

t

strategies e-Greedy (10%)
e-Greedy (20%)

e-Greedy (5%)
Gradient Weighted

Optimum Weighted
Sliding-Window AUC

Figure: Frequency of all algorithms being chosen by the strategies



Conclusion

23 2017-06-01

The ε-Greedy strategy is able to achieve the fastest convergence. The
remaining strategies achieve convergence as well but at a slower rate.

Future work will generalize from the problem of algorithmic choice
towards arbitrary nominal parameters. This requires combining the
techniques presented here to achieve maximum convergence speed
while defending against local extrema.



Online-Autotuning in the Presence of
Algorithmic Choice

24 2017-06-01

Thank you for your attention.

https://code.ipd.kit.edu/pfaffe/libtuning

https://code.ipd.kit.edu/pfaffe/libtuning

