

#### Online-Autotuning in the Presence of Algorithmic Choice

Philip Pfaffe, Martin Tillmann, Sigmar Walter, and Walter F. Tichy

KIT - Institute of Program Structures and Data Organization



#### Motivation



For a given task, there may be **multiple algorithms** available, each with its own set of tunable parameters.

Choice of optimal algorithm may depend on runtime context

- Input
- Hardware
- System load

Autotune algorithmic choice at runtime

#### **Motivation**



For a given task, there may be **multiple algorithms** available, each with its own set of tunable parameters.

Choice of optimal algorithm may depend on runtime context:

- Input
- Hardware
- System load

Autotune algorithmic choice at runtime

#### Motivation



For a given task, there may be **multiple algorithms** available, each with its own set of tunable parameters.

Choice of optimal algorithm may depend on runtime context:

- Input
- Hardware
- System load

Autotune algorithmic choice at runtime

## **Autotuning – The Basics**



#### **Search space** $T_a$ for an algorithm a with tuning parameters $\tau_{a,j}$ :

$$T_a = \tau_{a,0} \times \cdots \times \tau_{a,J}$$

A **configuration**  $C_a \in T_a$  is measured by the timing function  $m_a$ . The context K describes external influences (hardware, input data).

$$C_{optimal,a} = \underset{C_a}{\operatorname{arg \, min}} \ m_a(C_a, K)$$

#### **Autotuning – The Basics**



**Search space**  $T_a$  for an algorithm a with tuning parameters  $\tau_{a,j}$ :

$$T_a = \tau_{a,0} \times \cdots \times \tau_{a,J}$$

A **configuration**  $C_a \in T_a$  is measured by the timing function  $m_a$ . The context K describes external influences (hardware, input data).

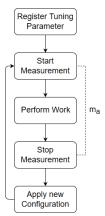
$$C_{optimal,a} = \underset{C_a}{\operatorname{arg\,min}} m_a(C_a, K)$$

#### The Online-Autotuning Scenario



# **Online-Autotuning** performs tuning at application runtime.

- Minimize overall application runtime.
- Minimize sum of tuning iterations  $\sum_i m_a(C_i)$ .
- **Each** evaluated configuration  $C_i$  has to be amortized.

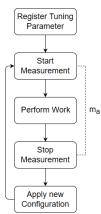


#### The Online-Autotuning Scenario



**Online-Autotuning** performs tuning at application runtime.

- Minimize overall application runtime.
- Minimize sum of tuning iterations  $\sum_i m_a(C_i)$ .
- **Each** evaluated configuration  $C_i$  has to be amortized.

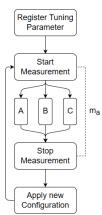




# Choose algorithm ${\bf A},\,{\bf B}$ or ${\bf C}$ in the current context.

Algorithms have their own search spaces  $T_A$ ,  $T_E$  and  $T_C$ .

Finding  $C_{optimal,A}$ ,  $C_{optimal,B}$  and  $C_{optimal,C}$  before choosing the optimal algorithm is not feasible in an online scenario.

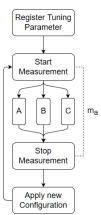




Choose algorithm **A**, **B** or **C** in the current context.

Algorithms have their own search spaces  $T_A$ ,  $T_B$  and  $T_C$ .

Finding  $C_{optimal,A}$ ,  $C_{optimal,B}$  and  $C_{optimal,C}$  before choosing the optimal algorithm is not feasible in an online scenario.

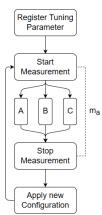




Choose algorithm **A**, **B** or **C** in the current context.

Algorithms have their own search spaces  $T_A$ ,  $T_B$  and  $T_C$ .

Finding  $C_{optimal,A}$ ,  $C_{optimal,B}$  and  $C_{optimal,C}$  before choosing the optimal algorithm is not feasible in an online scenario.



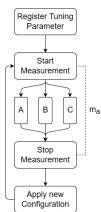


Autotune search spaces concurrently.

Exploit the only degree of freedom:

Order of evaluation

Amortize each sampled configuration. Choose near-optimal configurations, ignore bac configurations.



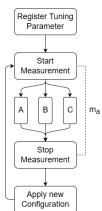


Autotune search spaces concurrently.

Exploit the only degree of freedom:

Order of evaluation

Amortize each sampled configuration. Choose near-optimal configurations, ignore bad configurations.





Tuning problem with algorithmic choice:

$$C_{opt} = \underset{A \in \mathcal{A}, C \in \mathcal{T}_A}{\operatorname{arg \, min}} m_A(C)$$

Evaluation in two phases:

- Choose algorithm A
- ② Perform tuning iteration on  $T_A$

Have to manage state of all search spaces  $T_A$ .

#### **Nominal Parameters**



Algorithmic Choice introduces **nominal tuning parameters** into our scenario.

| Class              | Distinguishing Property          | Example                                                              |  |  |
|--------------------|----------------------------------|----------------------------------------------------------------------|--|--|
| Nominal<br>Ordinal | Labels<br>Order                  | Choice of algorithm Choice of buffer sizes from                      |  |  |
| Interval           | Distance                         | a set small, medium, large<br>Percentage of a maximum<br>buffer size |  |  |
| Ratio              | Natural Zero, Equality of Ratios | Number of threads                                                    |  |  |

Known tuning strategies that rely on a measure of **direction** or **distance** are not applicable for nominal parameters.

## Algorithmic Choice – Strategies



#### Strategies for algorithmic choice:

- $\bullet$   $\epsilon$ -Greedy
- Gradient Weighted
- Optimum Weighted
- Sliding Window Area-Under-The-Curve

#### $\epsilon$ -Greedy Strategy



The  $\epsilon$ -Greedy strategy is a parameterized probabilistic method.

| Probability  | Action                                    |
|--------------|-------------------------------------------|
| $1-\epsilon$ | currently best performing algorithm       |
| $\epsilon$   | random algorithm with uniform probability |

Parameter  $\epsilon$  controls the explorative behavior. We used 0.05, 0.1 and 0.2 as values.

# **Weighted Probabilistic Methods**



Choose algorithm A with probability proportional to weight  $w_A$ . Weights are selected by the concrete strategy.

- Gradient Weighted
- Optimum Weighted
- Sliding Window Area-Under-The-Curve

The selection probability of algorithm *A* is then  $P_A = \frac{w_A}{\sum_{A' \in A} w_{A'}} > 0$ .

# **Gradient Weighted Strategy**



Choose algorithm A with probability proportional to weight  $w_A$ , based on the **gradient**  $G_A$  observed in the performance of the latest iteration window  $[i_0, i_1]$ .

$$G_A = rac{rac{1}{m_{A,i_1}} - rac{1}{m_{A,i_0}}}{i_1 - i_0}$$

$$w_A = \begin{cases} G_A + 2 & \text{if } G_A \ge -1 \\ -\frac{1}{G_A} & \end{cases}$$

We use an iteration window of 16.

## **Optimum Weighted Strategy**



Choose algorithm A with probability proportional to weight  $w_A$ , based on the **current optimal performance**.

$$w_A = \max_i \frac{1}{m_{A,i}}$$

# **Sliding Window Area-Under-The-Curve Strategy**



The Sliding Window AUC strategy is again a probabilistic method, which assigns a weight  $w_A$  based on the **area under the algorithm's performance curve** within a sliding iteration window  $[i_0, i_1]$ .

$$w_{A} = \frac{\sum_{i=i_{0}}^{i_{1}} \frac{1}{m_{A,i}}}{i_{1} - i_{0}}$$

We use a window size of 16.

#### **Evaluation**



#### Two case studies:

- Parallel String Matching
  - Seven algorithms and one heuristic.
  - No tuning parameters besides algorithmic choice.
- Raytracing
  - Four data structures.
  - Tuning parameters for tree bounds and construction heuristics.



Parallel versions of:

- Boyer-Moore
- Knuth-Morris-Pratt
- ShiftOr
- Hash3
- SSEF
- EBOM, FSBNDM
- Hybrid

| <br>b | b | а | b | С | а |  |
|-------|---|---|---|---|---|--|
|       |   | а | b | C |   |  |

Text corpora: bible and the human genome.

The query pattern and text are supplied at program invocation. Any precomputation is part of the algorithms runtime.



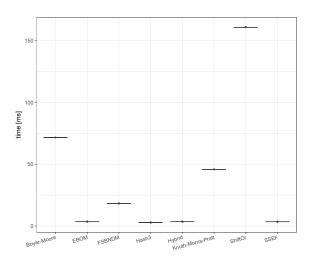


Figure: Performance of the parallel string matching algorithms



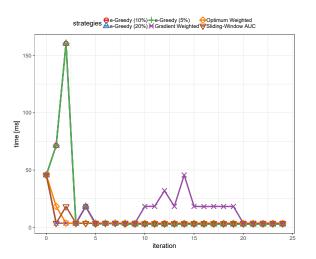


Figure: Median performance in individual iterations of all strategies



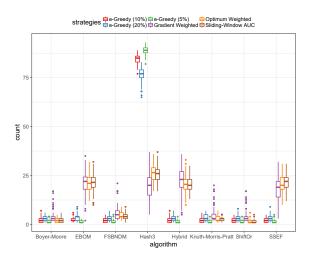


Figure: Frequency of all algorithms being chosen by the strategies

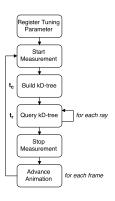


Two phase raytracing application. Iterate over 100 frames:

- Construct SAH kD-tree.
- Cast rays, query kD-tree.

Four different datastructes:

- Inplace
- Wald-Havran
- Nested
- Lazy



Each datastructure has their own tuning space with three or four parameters.



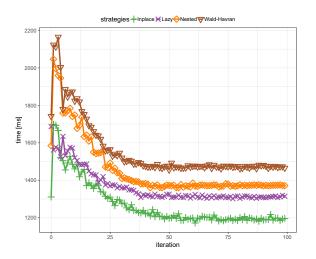


Figure: Tuning timeline of all four algorithms. The plot shows the average time taken in every iteration.



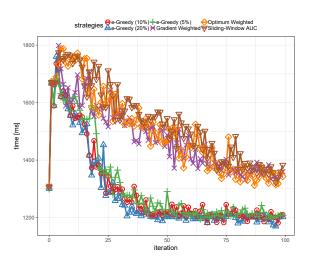


Figure: Median performance in individual iterations of all strategies



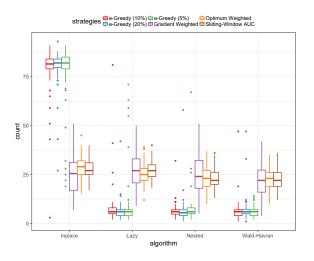


Figure: Frequency of all algorithms being chosen by the strategies

#### Conclusion



The  $\epsilon$ -Greedy strategy is able to achieve the fastest convergence. The remaining strategies achieve convergence as well but at a slower rate.

Future work will generalize from the problem of algorithmic choice towards **arbitrary nominal parameters**. This requires combining the techniques presented here to achieve maximum convergence speed while defending against local extrema.

# Online-Autotuning in the Presence of Algorithmic Choice



Thank you for your attention.

https://code.ipd.kit.edu/pfaffe/libtuning