
Use	of	Synthetic	Benchmarks	for	Machine-
Learning-based	Performance	Auto-tuning

Tianyi David	Han	and	Tarek	S.	Abdelrahman
The	Edward	S.	Rogers	Department	of	
Electrical	and	Computer	Engineering

University	of	Toronto

david.han@alumni.utoronto.ca tsa@ece.utoronto.ca

Machine-Learning-based	Auto-Tuning

2

Program
Features

Train

Optimization

Training Programs

Optimization Benefit

ML
Model

Predict

Should the optimization be applied?

Program
Features

New (Test) Program

Optimization

❓

❓
❓

• Increased	interest	in	Machine	Learning	(ML)	based	auto-
tuning,	particularly	for	GPUs

2017-06-02 iWAPT	- Orlando,	FL

This	Work
• Develop	the	AVDmetric	for	the	goodness	training	programs

• Consider	the	local	memory	optimization	problem	for	GPUs

• Models	trained	with	real	programs	are	poor	predictors

• Develop	systematic	ways	for	generating	synthetic	benchmarks

• Show	significant	improvement	in	models’	ability	to	predict	
when	trained	with	synthetic	benchmarks,	by	a	factor	of	1.5X

2017-06-02 3iWAPT	- Orlando,	FL

Outline
• Motivation
• Goodness	of	Training	Set
• Local	Memory	Optimization
• Real	and	Synthetic	Benchmarks
• Related	work
• Conclusions	and	Future	Work

2017-06-02 4iWAPT	- Orlando,	FL

Preliminaries

2017-06-02 5

Program	1
Extract	features:	(f1,	…	fn)
n-dimensional	Feature	space

(f1=a,f2=b)
2-D	Feature	Space

Optimization

Execute	optimized	and	un-optimized	versions

+/-

Program	T

(f1=c,f2=d)
Each	feature	vector	and	its	label	is	a	training	sample/vector

Collection	of	training	samples/vectors	is	the	training	set

Other	
Optimizations

Other	
Optimizations

(f1=e,f2=f)

(f1=g,f2=h)

+/-

+/-

+/-

training	vector

f1

f2

(a,b)

iWAPT	- Orlando,	FL

Goodness	of	Training	Set

2017-06-02 6

Feature	Space

Feature	1

Feature	2

• How well	do	training	samples	“cover”	test	samples?❓

Training	samples/vectors
Test	samples/vectors

iWAPT	- Orlando,	FL

Coverage	– Vicinity	Density	(VD)

2017-06-02 7

Feature	Space

Feature	1

Feature	2

Training	samples/vectors
Test	samples/vectors

• Average	Vicinity	Density:	AVD(T)	=	

Train	a	regression	tree

size(R): #	vectors	in	R

vectors(R): #	training	
samples	in	R

VD(t):	vectors(Rt)/size(Rt)

t

∑
t∈TΑ

VD(t)	/	|T|

t

T:	Test	set

iWAPT	- Orlando,	FL

Outline
• Motivation
• Goodness	of	Training	Set
• Local	Memory	Optimization
• Real	and	Synthetic	Benchmarks
• Related	work
• Conclusions	and	Future	Work

2017-06-02 8iWAPT	- Orlando,	FL

Local	Memory	Optimization
• User-managed	caching	of	data	from	the	GPU	device	memory	

into	fast	local	(shared)	memory
– Exploit	data	re-use	and	avoid	the	penalty	of	memory	non-coalescing

2017-06-02 9

Smaller	number
of	global	memory	

transactions

Overhead	of
data	movement

and	synchronization

Potential	for
reduced

parallelism

Factors:	degree	of	non-coalescing,	degree	of	reuse,	
parallelism,	contextual	accesses,	etc.

Hard	to	predict	if	the	optimization	is	beneficial	[Han	and	Abdelrahman	2015]
iWAPT	- Orlando,	FL

Outline
• Motivation
• Goodness	of	Training	Set
• Local	Memory	Optimization
• Real	and	Synthetic	Benchmarks
• Related	work
• Conclusions	and	Future	Work

2017-06-02 10iWAPT	- Orlando,	FL

Real	Benchmarks
Benchmark Application	Domain Description

transpose

Dense
Linear	Algebra

Matrix	transpose
matrixMul_A Matrix	multiply	(cache	A)
matrixMul_B Matrix multiply	(cache	B)
MVT Matrix	vector	multiply
SGEMM C	=	alpha *	A	*	B	+	beta	*	C
convSep_row

Structured	Grid
(Stencil)

Separable 2D	convolution	(row	filter)
convSep_col Separable 2D	convolution	(column	filter)
blur Blur filter
SAD Sum of	Absolute	Difference
SAD_frame Cache the	frame	image	in	SAD
LBM Lattice	Boltzman Machine	(struct elements)
STENCIL 3D,	27-point
MRI-GRIDDING Unstructured	Grid Maps	non-uniform	3D	input	data	onto	a	regular	3-D	grid

112017-06-02 iWAPT	- Orlando,	FL

ML	Features
• We	use	15	features:

– Inter-warp	(single-access)	data	reuse
– Stencil	pattern	data-reuse
– Memory	non-coalescing	(single-access)
– Total	amount	of	(all)	data	accessed	by	a	workgroup
– Data	utilization	rate	in	cooperative	loading
– Cooperative	loading	efficiency
– Parallelism	levels	before	and	after	the	optimization
– Grid	efficiency
– Computation	length
– #	of	contextual	accesses
– Memory	non-coalescing	in	contextual	accesses

2017-06-02 12iWAPT	- Orlando,	FL

Evaluation	Methodology
• Execute	every	benchmark	with	and	without	local	memory	

optimization	for	all	possible	launch	configurations
– Nvidia Tesla	2090,	CUDA	6.0,	Intel	Xeon	E5-2620	host
– Calculate	the	speedup	of	the	optimized	version
– Label	each	benchmark/launch	configuration	(beneficial/not	beneficial)

• Leave-one-out	evaluation
– Build	a	model	with	12	benchmarks	and	predict	for	the	13th

– Each	model	a	Random	Forest	with	20	trees,	4	features	per	tree
– These	are	called	real	models	because	they	are	trained	with	real	

benchmarks	data

2017-06-02 13iWAPT	- Orlando,	FL

Model	Accuracy
• Use	the	known	labels	of	the	test	set	to	determine	the	

accuracy	of	the	model
– Averaged	for	each	benchmark	over	all	launch	configurations

• Count-based prediction	accuracy
– %	of	test	vectors	where	the	prediction	is	correct

• Penalty-weighted prediction	accuracy
– %	of	performance	achieved	by	the	prediction
– Weigh	the	misprediction by	the	degradation	in	performance	it	causes

2017-06-02 14iWAPT	- Orlando,	FL

Real	Models	Accuracies

2017-06-02 15

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Count-based	Accuracy Penalty-weighted	Accuracy

C:	57%
P:	81%

iWAPT	- Orlando,	FL

Model	Accuracy	vs.	AVD
• For	each	real	benchmark	as	a	test	set,	evaluate	the	model	

accuracy	and	AVD	for	all	possible	training	sets

16

212 - 1	=	4095	possible	
training	sets	per	test	set

4095*13	=	~53K	models

2017-06-02 iWAPT	- Orlando,	FL

Increasing	the	AVD
• Generate	“synthetic”	feature	vectors	that	increase	the	AVD	for	

test	sets
– Challenge:	no	a	priori	knowledge	of	the	test	data

• Use	a	synthetic	benchmark	template	to	generate	code	
instances	that	have	these	feature	vectors

• Repeat	the	previous	experiment,	training	with	synthetic	(and	
real)	benchmark	samples
– The	models	are	called	synthetic models because	they	are	trained	with	

synthetic	benchmarks

2017-06-02 17iWAPT	- Orlando,	FL

Synthetic	Vectors:	Bounding	Box	(bb-k)

2017-06-02 18

Feature	Space

Feature	1

Feature	2

Training	sample/vector
Synthetic	sample/vector

• Uniformly	sample	in	expanded	bounding	box	of	training	data	of	
each benchmark

iWAPT	- Orlando,	FL

Synthetic	Vectors:	Bounding	Box	(bb-all)

2017-06-02 19

Feature	Space

Feature	1

Feature	2

Training	sample/vector
Synthetic	sample/vector

• Uniformly	sample	in	expanded	bounding	box	of	all training	
data	of	benchmarks

iWAPT	- Orlando,	FL

Synthetic	Models	Accuracies	– bb-k

2017-06-02 20

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Count-based	Accuracy Penalty-weighted	Accuracy
C:	87%
P:	94%

90K	Samples

iWAPT	- Orlando,	FL

Synthetic	Models	Accuracies	– bb-all

2017-06-02 21

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Count-based	Accuracy Penalty-weighted	Accuracy
C:	83%
P:	92%

90K	Samples

iWAPT	- Orlando,	FL

Model	Accuracy
• We	can	significantly	increase	the	model	accuracy	by	using	

synthetic	benchmarks,	derived	to	increase	the	AVD
– 90,000	synthetic	samples	versus	7834	real	ones	(11.5X)
– 1.52X/1.16X	count-based/penalty-weighted	prediction	accuracies
– 2.4X	AVD

2017-06-02 22iWAPT	- Orlando,	FL

Impact	of	Training	Set	Size

2017-06-02 23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 7834 10000 20000 30000 40000 50000 60000 70000 80000 90000

Ac
cu
ra
cy
	/
	A
VD

Training	set	size

Count-based	Accuracy AVD

bb-k	models,	averaged	over	all	benchmarks

real	models

iWAPT	- Orlando,	FL

Outline
• Motivation
• Goodness	of	Training	Set
• Local	Memory	Optimization
• Real	and	Synthetic	Benchmarks
• Related	work
• Conclusions	and	Future	Work

2017-06-02 24iWAPT	- Orlando,	FL

Related	Work
• Considerable	work	on	building	machine	learning	models	for	

performance	auto-tuning	[Grewe et	al.	2013],	[Magni et	al.	
2014],	[Agakov et	al.	2006],	[Cavazos	et	al.	2007],	etc.
– The	use	of	a	small	set	(10’s)	of	real	programs
– We	use	a	large	number	of	synthetic	benchmarks	for	training

• Use	of	synthetic	benchmarks	[Han	&	Abdelrahman	2015],	
[Garvey	&	Abdelrahman	2015],	[Cummins	et	al.	2016]
– No	systematic	way	for	generating	synthetic	benchmarks
– This	work	reasons	why	there	is	benefit	and	systemizes	generation

2017-06-02 25iWAPT	- Orlando,	FL

Related	Work	– Cont’d
• Deep	Learning	for	generating	synthetic	benchmarks	by	mining	

code	repositories	[Cummins	et	al.	2017]
– Focus	is	on	synthetically	correct/human	readable	code	
– Our	focus	is	complementary

• Data	sets	for	training	and	testing,	e.g.	[Borovicka et	al.	2012]
– How	to	select	a	good	subset	of	the	data	for	training
– Oversampling	to	balance	data	sets,	e.g.,	SMOTE	2002
– Data	already	exists	and	no	focus	on	programs

2017-06-02 26iWAPT	- Orlando,	FL

Conclusions
• Advocated	the	use	of	synthetic	benchmarks	for	training	

machine	learning	model
– A	metric	for	the	quality	of	a	training	set	with	respect	to	a	test	set
– The	metrics	show	that	models	trained	with	a	small	number	of	real	

benchmarks	have	poor	performance	because	of	poor	training	data

• Proposed	methods	for	generating	synthetic	benchmarks	for	
training	a	ML	model	
– Shown	a	significant	improvement	in	model	performance

• The	use	of	synthetic	benchmarks	is	effective	and	useful

2017-06-02 27iWAPT	- Orlando,	FL

Future	Work
• This	work	is	an	initial	step	towards	showing	the	effectiveness	

of	synthetic	benchmarks	
– Determining	a	good	number	of	synthetic	benchmarks

– Other	approaches	for	determining	feature	vectors	of	synthetic	
samples,	e.g.,	a	hybrid	of	bb-all	and	bb-k

– More	efficient	ways	of	generating	code	from	desired	feature	vectors

– Other	GPU	optimizations

– The	use	of	deeper	models	for	prediction,	enabled	by	the	abundance	of	
synthetic	data

2017-06-02 28iWAPT	- Orlando,	FL

Questions?

2017-06-02 29iWAPT	- Orlando,	FL

