
Use of Code Structural Features for Machine
Learning to Predict Effective Optimizations

International Workshop on Automatic Performance Tuning

May 25, 2018@Vancouver, Canada

Yuki Kawarabatake, Mulya Agung, Kazuhiko Komatsu, 
Ryusuke Egawa, and Hiroyuki TAKIZAWA

(Tohoku University)



Outline
 Introduction

 Use of code structures for machine learning

 Preliminary evaluation results

 Conclusion and future work

International Workshop on Automatic Performance Tuning 2018



Background
 What is the dominant factor of actual 

simulation performance? Peak flop/s rate?

International Workshop on Automatic Performance Tuning 2018

P
e
rf

o
rm

a
n

c

e

Time/Effort

Achievable performance

Affordable point

Actual Performance

Actual performance is often determined by

programmers’ time and/or efforts
invested in performance engineering.

More complicated system

Ideas for lifting up the curve

Naïve



Performance-aware Programming

Performance 

Measurement

Performance 

Analysis

Performance 

Modelling

Performance 

Optimization

Execution & Profiling

Finding bottleneck

Estimating expected 
performance

Do something to 
improve performance

International Workshop on Automatic Performance Tuning 2018



Motivation

 Can we write an explicit algorithm to predict effective 
optimizations for a given code?  Yes and No.
• Yes. Compilers automatically apply various optimizations to a given 

code.

• No. Expert programmers still have to select various options in practice.
• Algorithms, data structures, loop transformations, …

 Since there is no clear algorithm of the prediction, 
human experts have to predict effective optimizations
on a case-by-case basis.

The final goal is to automate the prediction to reduce
burdens of performance optimization on programmers.

International Workshop on Automatic Performance Tuning 2018



This paper
 Effective Compiler Option Prediction

Compiler option selection = Performance optimization selection

• O2 option flag = almost all supported optimizations that do not 
involve a space-speed tradeoff. 

• O3 option flag = more optimizations are turned on.

NAS Parallel BenchmarkSize S Size A

Higher is better

International Workshop on Automatic Performance Tuning 2018



Outline

International Workshop on Automatic Performance Tuning 2018

 Introduction

 Use of code structures for machine learning

 Preliminary evaluation results

 Conclusion and future work



Penalty Weighted Geometric Accuracy
 Definition of Average Prediction Accuracy

• Misprediction of compiler option flags sometimes leads to 
drastic performance degradation, but other times not.
 Need to consider not only the misprediction count but also the 
performance penalty of each misprediction. 

• Arithmetic mean of ratios such as normalized values can be 
misleading.
 Use Geometric Mean, instead.

 Penalty Weighted Geometric Accuracy (PWGA)
• Prediction accuracy with considering the performance penalty 

of misprediction.

International Workshop on Automatic Performance Tuning 2018

Execution time with 

best compiler options

Execution time with 

predicted compiler options



Related Work

 Prediction by machine learning with performance 
profiling information  (Cavazos+ 2007)

Reproduction of their results on our environment

Better than random selection.

But far from perfect.

International Workshop on Automatic Performance Tuning 2018



How can we improve it?

 Why not perfect?
• The number of training data is too small.

• Only 263 loops are used for our experiment.

• The information about the code itself is not available.
• Human experts also see the code to find the performance 

bottleneck to consider effective optimizations.

What happens if the code information is 

available for machine learning to predict effective 

compiler options?

International Workshop on Automatic Performance Tuning 2018



Not so easy…

 How can we express code structures as a 
vector?
• It’s not easy to appropriately quantify the features 

The accuracy is degraded by using the additional features.

International Workshop on Automatic Performance Tuning 2018

Manually-defined code features



Discovering Useful Features
 Success in image recognition/classification

• Conventional approaches
• Features of images are predefined.

• Feature selection is the key to success.

• Deep learning (LeCun+ 2015)

• Feature learning/representation learning

• Machine learning can find not only underlying classification rules but 
also useful features for the classification.

• Big data with high computing power are the key to success.

International Workshop on Automatic Performance Tuning 2018



Use of code structural features

Profiling Manual feature selection

Representation learning

This must be represented 

as a fixed-size vector.

International Workshop on Automatic Performance Tuning 2018



Tree-Based Convolutional Neural 
Network

The code structure is translated into a vector.

International Workshop on Automatic Performance Tuning 2018

Word2vec



Outline

International Workshop on Automatic Performance Tuning 2018

 Introduction

 Use of code structures for machine learning

 Preliminary evaluation results

 Conclusion and future work



Experimental Setup
Intel Xeon E5-2695v2

Peak Performance [Gflop/s] 230.4/socket, 

19.2/core

Number of cores 12

Vector length/ SIMD width (double) 4

Cache size L2:256KB/core, 

L3:30MB/socket

Memory bandwidth [GB/s] 59.7

Compiler GNU Fortran Compiler 

4.4.7

Performance Counter PAPI 5.3.2

International Workshop on Automatic Performance Tuning 2018

Cross-validation is performed for the evaluation.

Some of data are used for training and the others are for testing.

Randomly selected



Prediction Using Only Code 
Structural Features

Representation learning can extract useful features from code structures.

 A higher performance is achieved for some cases.

Representation learning can achieve 

almost the same performance as the 

existing profiling-based approach.

International Workshop on Automatic Performance Tuning 2018



Using All the Features

Prediction accuracy improved Prediction accuracy degraded

International Workshop on Automatic Performance Tuning 2018



Outline

International Workshop on Automatic Performance Tuning 2018

 Introduction

 Use of code structures for machine learning

 Preliminary evaluation results

 Conclusion and future work



Conclusions

 This work is still ongoing.
• Code structural features are used to predict effective 

performance optimizations
• TBCNN is used to convert a code structure to a fixed-size vector so 

that it can discover useful features from training data.

• The prediction accuracy improves if the number of training 
data is not too small, but degrades if it is too small.
• It is unclear why use of the code structural features differently 

affects the accuracy, depending on the number of training data.

 Conclusion
• Use of code structural features discovered by representation 

learning is promising to improve the accuracy if an enough 
number of data are available.
 Artificial training data generation (future work)

International Workshop on Automatic Performance Tuning 2018



Acknowledgments
 This work was partially supported by 

• JST CREST Xevolver Project 

• DFG SPPEXA ExaFSA project 

• Grant-in-Aid for Scientific Research(B) 16H02822

• Grant-in-Aid for Challenging Exploratory Research 
15K12033

• The performance evaluation results were obtained 
using supercomputing resources of the 
Cyberscience Center, Tohoku University.


