A case study on modeling the performance of dense matrix computation:

Tridiagonalization in the EigenExa eigensolver on the K computer

The 13th International Workshop on Automatic Performance Tuning (iWAPT2018)

May 25, 2018

held in conjunction with IEEE IPDPS 2018

@ JW Marriott Parq Vancouver, Vancouver, Canada

<u>Takeshi Fukaya^{1, 2}</u>, Toshiyuki Imamura², Yusaku Yamamoto³

1: Hokkaido University

2: RIKEN Center for Computational Science

3: The University of Electro-Communications

Background

Importance of performance modeling

- Performance modeling is one of important tasks in HPC including automatic performance tuning.
- Well constructed models can reduce the cost of tuning and help one to efficiently allocate limited computational resources.

Difficulties in performance modeling

- Performance behavior of a program (on large-scale parallel systems) is complicated; many factors (cost for arithmetic and communication) effect the execution time.
- Available information for modeling is usually limited.
- Verifying models is also not easy; comparison with actual (measured) timing results is impractical in some cases.

Related work

Dackland et al., 1996:

Performance modeling of the routine in ScaLAPACK by accumulating the estimation of low-level routines. (Model parameters was configured by theoretical performance of the target system and experiments.)

J. Demmel et al., 2012:

Performance model was used for evaluating the effectiveness of CA-QR/LU factorization on future machines. (Model was simple, and parameters was determined from expected theoretical peak performance.)

• A. Calotoiu et al., 2013:

General techniques for empirical performance modeling (Automatically selecting basis functions in model based on sampling data)

Overview of this study

Motivation

- During the development of the EigenExa eigensolver on the K computer, we have accumulated a lot of measured timing data.
- For a certain program, comparison of different approaches to performance modeling has not been sufficiently investigated.

Contribution

- For the tridiagonalization routine in EigenExa (named eigen_trd), we attempt to construct performance models.
- We consider four approaches to performance modeling and evaluate them by comparing with measured timing data.
- We also present some observations from measured data, which will be informative for further research for modeling.

Outline

- 1. Introduction
- 2. Overview of eigen_trd
- 3. Measured results on the K computer
- 4. Approaches to performance modeling
- 5. Evaluation of the performance models
- 6. Conclusion

Overview of eigen_trd

Overview of EigenExa

- EigenExa eigensolver (main developer: T. Imamura)
 - Target problem: real symmetric dense eigenvalue problem
 - Target system: K computer and post-petascale systems
 - Two driver routines:
 - ✓ eigen_s: traditional approach based on tridiagonalization
 - ✓ eigen_sx: new approach employing penta-diagonalization

Evaluation using 4,800 nodes of Oakleaf-FX supercomputing system @ The Univ. of Tokyo (T. Fukaya & T. Imamura, PDSEC2015)

Overview of eigen_trd

- eigen_trd: tridiagonalization routine in EigenExa
 - Transform an input symmetric matrix into a tridiagonal matrix using orthogonal Householder transformations.
 - Employs Dongarra's method to reduce the memory access cost in symmetric matrix-vector multiplications.

Arithmetic & communication cost

Computation	#flops per		Bcast ocesses)	MPI_Allreduce $(\sqrt{P} \text{ processes})$		
Computation	process	#issues	#words	#issues	#words	
computing_u	$O\left(\frac{N^2}{\sqrt{P}}\right)$	2 <i>N</i>	$\frac{N^2}{\sqrt{P}}$	N	O(N)	
mat_vec_mult	$\frac{2N^3}{3P}$			2 <i>N</i>	$\frac{N^2}{\sqrt{P}}$	
computing_v	$O\left(\frac{N^2}{\sqrt{P}}\right)$	N	$\frac{N^2}{2\sqrt{P}}$	2 <i>N</i>	O(N)	
mat_mat_mult	$\frac{2N^3}{3P}$					

process grid in EigenExa

(N: matrix size, P: # of processes, process grid: $\sqrt{P} \times \sqrt{P}$)

Measured results on the K computer

Evaluation conditions

Specifications of the K computer

Item	Specification/values				
CPU	SPARC64 VIIIfx (2.0GHz, 8cores)				
Memory	DDR3 SDRAM (64GB/s)				
Node	1 CPU and 16 GB memory				
Network	Torus fusion 6D mesh/torus (Tofu), 5 GB/s/link, bidirectional				
System	88,128 nodes (compute nodes: 82,944)				
Peak FLOPS/system	11.28PFLOPS				

Evaluation conditions (for details, see our paper)

- Fujitsu Fortran90 (mpifrtpx) compiler with "-Kfast,openmp -Cpp -Cfpp" and Fujitsu BLAS/LAPACK MPI libraries.
- Test matrix: $A_{i,j} = N + 1 \max(i,j)$

Measured timing data

Totally 60 timing results of eigen_trd on the K computer

Difficulty in detailed measurement

```
subroutine function 1(...)
      MPI_Barrier(...) --- (*)
      t1 = MPI_Wtime()
        [computation]
      MPI_Barrier(...) --- (**)
      ct1 = MPI_Wtime()
        MPI_Allreduce(...)
      MPI_Barrier(...) --- (**)
      ct2 = MPI Wtime()
      g_{ctime1} = g_{ctime1} + (ct2 - ct1)
        [computation]
      MPI_Barrier(...) --- (*)
      t2 = MPI_Wtime()
      g_{time1} = g_{time1} + (t2 - t1)
end subroutine
```

Effect of synchronization on the measured timing results.

- Case 1: no barrier
- Case 2: barrier at (*)
- Case 3: barrier at (*) & (**)

Total execution time (N=50.000)

Case 1: no barrier

Case 2: barrier at (*)

Case 3: barrier at (*) & (**)

```
subroutine function1(...)
     MPI_Barrier(...) --- (*)
     t1 = MPI_Wtime()
        [computation]
     MPI_Barrier(...) --- (**)
     ct1 = MPI Wtime()
        MPI_Allreduce(...)
     MPI_Barrier(...) --- (**)
     ct2 = MPI_Wtime()
     g ctime1 = g ctime1 + (ct2 - ct1)
        [computation]
     MPI_Barrier(...) --- (*)
     t2 = MPI Wtime()
     g_{time1} = g_{time1} + (t2 - t1)
end subroutine
```


- Case 1: no barrier
- Case 2: barrier at (*)
- Case 3: barrier at (*) & (**)

```
subroutine function1(...)
     MPI_Barrier(...) --- (*)
     t1 = MPI_Wtime()
        [computation]
     MPI_Barrier(...) --- (**)
     ct1 = MPI Wtime()
        MPI_Allreduce(...)
     MPI_Barrier(...) --- (**)
     ct2 = MPI_Wtime()
     g ctime1 = g ctime1 + (ct2 - ct1)
        [computation]
     MPI_Barrier(...) --- (*)
     t2 = MPI Wtime()
     g_{time1} = g_{time1} + (t2 - t1)
end subroutine
```


Case 1: no barrier

Case 2: barrier at (*)

Case 3: barrier at (*) & (**)

```
subroutine function1(...)
     MPI_Barrier(...) --- (*)
     t1 = MPI_Wtime()
        [computation]
     MPI_Barrier(...) --- (**)
     ct1 = MPI Wtime()
        MPI_Allreduce(...)
      MPI_Barrier(...) --- (**)
     ct2 = MPI_Wtime()
      g ctime1 = g ctime1 + (ct2 - ct1)
        [computation]
     MPI_Barrier(...) --- (*)
     t2 = MPI Wtime()
      g_{time1} = g_{time1} + (t2 - t1)
end subroutine
```


Case 1: no barrier

Case 2: barrier at (*)

Case 3: barrier at (*) & (**)

```
subroutine function1(...)
     MPI_Barrier(...) --- (*)
     t1 = MPI_Wtime()
        [computation]
     MPI_Barrier(...) --- (**)
     ct1 = MPI Wtime()
        MPI_Allreduce(...)
     MPI_Barrier(...) --- (**)
     ct2 = MPI_Wtime()
     g ctime1 = g ctime1 + (ct2 - ct1)
        [computation]
     MPI_Barrier(...) --- (*)
     t2 = MPI Wtime()
     g_{time1} = g_{time1} + (t2 - t1)
end subroutine
```


Approaches to Performance modeling

Assumption and goal of modeling

Assumption

- Target machine is given: K computer, information of the machine is limited (in next slides).
- Target program is given: eigen_trd in EigenExa, information of the program (computational and communication pattern) is already known.

◆Goal

available information of the target machine and program

- matrix size: N
- number of nodes: P

Execution time:

 $T_{\rm trd}(N,P)$

Situations

We attempt modeling in four situations:

- 1. The target machine does not exist: only the **specifications** of the machine are available.
- 2. Simple benchmark programs can be run using a part of the target machine: results of **BLAS routines** and **MPI ping-pong** are available.
- 3. Specified benchmark programs can be run using limited computational resources: results of modified version of the target program (without MPI routines) and MPI collective routines are available.
- 4. The target program can be run using sufficient resources: measured results of the target program are available.

In each situation, available information for modeling is different.

Situation 1

Modeling in Situation 1

Specifications of the K computer

Symbol	Item	Specification
F	FLOPS/node	1.28×10^{11} (flop/sec)
B_{M}	Memory bandwidth/node	6.40×10^{10} (byte/sec)
B_N	Network bandwidth	5.00×10^9 (byte/sec)
L	Network latency	9.20×10^{-7} (sec)

Main idea

$$T_{\text{trd}}(N, P) = T_{\text{flop}}(N, P) + T_{\text{comm}}(N, P)$$
time for arithmetic time for communication

We separately model the time for arithmetic and communication.

Modeling the time for arithmetic

 $T_{\text{fl}op}$ = (time for one operation) · (# of operations)

$$T_{\text{flop}}(N,P) = \gamma_{\text{mm}} \cdot \frac{2N^3}{P} + \gamma_{\text{mv}} \cdot \frac{2N^3}{P}$$
mat-mat mult.

B/F ratio in symmetric mat-vec mult. is 4flops/8bytes.

$$\gamma_{\rm mm} = \frac{1}{F}, \ \gamma_{\rm mv} = \frac{2}{B_M}$$

Modeling the time for communication

$$T_{\text{p2p}}(w) = \alpha + \beta \cdot w$$

w: data size

$$T_{\text{comm}}(N,P) = \alpha \cdot M_{\text{p2p}}(N,P) + \beta \cdot W_{\text{p2p}}(N,P)$$
total number of issues

We assume MPI_Allreduce and MPI_Bcast are operated along with a binary tree.

$$M_{\text{p2p}}(N,P) = 8N \log_2 \sqrt{P}, \ W_{\text{p2p}}(N,P) = \frac{5N^2}{2\sqrt{P}} \log_2 \sqrt{P}$$

$$\alpha = L, \quad \beta = \frac{8}{B_N}$$

Obtained model in Situation 1

$$T_{\text{trd}}(N,P) = \left(\frac{1}{F} + \frac{2}{B_M}\right) \cdot \frac{2N^3}{P} + L \cdot 8N \log_2 \sqrt{P} + \frac{8}{B_N} \cdot \frac{5N^2}{2\sqrt{P}} \log_2 \sqrt{P}$$

Symbol	Item	Specification		
F	FLOPS/node	1.28×10^{11} (flop/sec)		
B_{M}	Memory bandwidth/node	$6.40 imes 10^{10}$ (byte/sec)		
B_N	Network bandwidth	5.00×10^9 (byte/sec)		
L	Network latency	9.20×10^{-7} (sec)		

Situation 2

Modeling in Situation 2

Benchmark results of BLAS & MPI ping-pong

Main idea

We employ the same approach in Situation 1, but model parameters are determined from benchmark results.

Obtained model in Situation 2

$$T_{\text{trd}}(N,P) = (\gamma_{\text{mm}} + \gamma_{\text{mv}}) \cdot \frac{2N^3}{P} + \alpha \cdot 8N \log_2 \sqrt{P} + \beta \cdot \frac{5N^2}{2\sqrt{P}} \log_2 \sqrt{P}$$

Parameter	Value			
$\gamma_{ m mm}$	8.77×10^{-12}			
$\gamma_{ m mv}$	4.23×10^{-11}			
α	1.23×10^{-5}			
β	5.06×10^{-9}			

B/F ratio in dsymv is 1/2 that in dgemv.

By LS fitting.

Situation 3

Modeling in Situation 3

Execution of specified benchmark program

- A modified version of eigen_trd without MPI routines (Program can finish, but result is nonsense.)
- MPI collective routines using \sqrt{P} processes.

◆ Main idea

$$T_{\text{trd}}(N,P) = T_{\text{flop}}(N,P) + T_{\text{al}}(N,P) + T_{\text{bc}}(N,P)$$

$$\underbrace{\text{time for MPI_Allreduce}}_{\text{time for MPI_Bcast}}$$

- $T_{\text{flop}}(N, P)$ is directly measured by the modified program.
- $T_{\rm al}(N,P)$ and $T_{\rm bc}(N,P)$ are modeled using the benchmark results of MPI collective routines.

Time of MPI collective routines

•
$$T_{\rm al}(N,P) = \alpha_{\rm al}(\sqrt{P}) \cdot 5N + \beta_{\rm al}(\sqrt{P}) \cdot \frac{N^2}{\sqrt{P}}$$

• $T_{\rm bc}(N,P) = \alpha_{\rm bc}(\sqrt{P}) \cdot 3N + \beta_{\rm bc}(\sqrt{P}) \cdot \frac{3N^2}{2\sqrt{P}}$
total number of issues total amount of data

We determine the model parameters from benchmark results.

Obtained model in Situation 3

$$\begin{split} T_{\mathrm{trd}}(N,P) &= T_{\mathrm{flop}}(N,P) & \qquad \mathbf{Measured} \\ &+ \alpha_{\mathrm{al}} \big(\sqrt{P} \big) \cdot 5N + \beta_{\mathrm{al}} \big(\sqrt{P} \big) \cdot \frac{N^2}{\sqrt{P}} \\ &+ \alpha_{\mathrm{bc}} \big(\sqrt{P} \big) \cdot 3N + \beta_{\mathrm{bc}} \big(\sqrt{P} \big) \cdot \frac{3N^2}{2\sqrt{P}} \end{split}$$

Situation 4

Modeling in Situation 4

A number of measured timing results of eigen_trd

Main idea

 We construct a model as a linear combination of basis functions of N and P:

$$T_{\mathrm{trd}}(N,P) = \sum c_i \cdot F_i(N,P)$$
.

 We determine the model parameters by LS fitting using the sample data.

Obtained model in Situation 4

$$T_{\text{trd}}(N,P) = c_1 \cdot \frac{N^3}{P} + c_2 \cdot N \log_2 \sqrt{P} + c_3 \cdot \frac{N^2}{\sqrt{P}} \log_2 \sqrt{P}$$

Sample data:
$$(T_k, N_k, P_k)$$
 $k = 1, ... K$

Set	c_1	c_2	c_3	
1	4.06×10^{-11}	5.10×10^{-5}	4.18×10^{-8}	
2	4.07×10^{-11}	5.58×10^{-5}	3.41×10^{-8}	
3	4.01×10^{-11}	5.21×10^{-5}	3.92×10^{-8}	

Summary of modeling in each situation

Summary of modeling in each situation

	Model form	Features	Required resources
1	$T_{\text{flop}}(N, P) + T_{\text{comm}}(N, P)$	Parameters: determined from specifications	Nothing
2	$T_{\text{flop}}(N, P) + T_{\text{comm}}(N, P)$	Parameters: determined from benchmark results of BLAS & MPI ping-pong	2 nodes
3	$T_{\text{flop}}(N, P)$ + $T_{\text{al}}(N, P)$ + $T_{\text{bc}}(N, P)$	 T_{flop}: measured by modified eigen_trd Parameters: determined from benchmark results of MPI collective routines 	Up to \sqrt{P} nodes
4	$\sum_{i=1}^{3} c_i \cdot F_i(N, P)$	Parameters: determined by LS fitting using sample data	Depending on sample data

Evaluation of the performance models

Evaluation metric

Compare the estimation with measured timing data

$$(relative error) = \frac{(estimated time) - (measured time)}{(measured time)}$$

	Model form	Features	Required resources
1	$T_{\text{flop}}(N, P) + T_{\text{comm}}(N, P)$	Parameters: determined from specifications	Nothing

- Accurate modeling using only the specifications is quite difficult.
- Estimation by the model is much smaller than the actual time.
 (Because theoretical performance was used.)

	Model form	Features	Required resources
2	$T_{\text{flop}}(N, P) + T_{\text{comm}}(N, P)$	Parameters: determined from benchmark results of BLAS & MPI ping-pong	2 nodes

- Estimation error is about 20% for some cases.
- Error tends to be larger when P is large and N is small.
 (Difficulty of estimation of communication cost?)

	Model form	Features	Required resources
3	$T_{\text{flop}}(N, P)$ + $T_{\text{al}}(N, P)$ + $T_{\text{bc}}(N, P)$	• T_{flop} : measured by modified eigen_trd • Parameters: determined from benchmark results of MPI collective routines	Up to \sqrt{P} nodes

- For all cases excepting P is large and N is small, estimation is accurate. (error is in 5~10%.)
- One of main reasons for accurate estimation would be the measurement of the time for $T_{\rm flop}$.

	Model form	Features	Required resources	
4	$\sum_{i=1}^{3} c_i \cdot F_i(N, P)$	Parameters: determined by LS fitting using sample data	Depending on sample data	

8.0

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

Sample data used for fitting

 For every case, estimation is very accurate. (error is within 10%)

Effect of sample data set in Situation 4

No significant differences are found.

(Differences of sample data set rarely impacted the accuracy of estimation.)

Overall comparison

Model 3

Model 2

Model 4 (data set 1)

		\					,	4
	10000	-0.117	-0.024	-0.008	-0.046	-0.071	-0.093	1
	20000	0.017	-0.034	0.045	0.028	-0.038	-0.084	0.8
	30000	0.028	0.028	0.044	0.080	-0.002	-0.067	0.6
	40000	0.067	0.088	0.021	0.074	0.034	-0.048	0.4
z	50000	0.061	0.110	0.044	0.071	0.064	-0.033	0.2
	60000	0.048	0.090	0.070	0.070	0.084	-0.013	0
	70000	0.035	0.115	0.100	0.049	0.086	0.005	-0.2
	80000	0.010	0.112	0.127	0.037	0.084	0.016	-0.4
	90000	-0.022	0.019	0.107	0.047	0.085	0.041	-0.6
	100000	-0.002	0.094	0.149	0.051	0.085	0.055	-0.8
	,	16	64	256	1024	4096	16384	-1

-0.2

-0.4

Conclusion

Summary and future work

- We attempted to model the performance of eigen_trd (tridiagonalization routine) in EigenExa on the K computer.
- We considered 4 situations, where different limited information is available for performance modeling.
- We evaluated the estimation by each model comparing with the measured timing data.
- Evaluation with other dense matrix computation and on other computer systems remains to be investigated.

