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Background
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 Importance of performance modeling 

• Performance modeling is one of important tasks in HPC 

including automatic performance tuning.

• Well constructed models can reduce the cost of tuning and help 

one to efficiently allocate limited computational resources.

 Difficulties in performance modeling 

• Performance behavior of a program (on large-scale parallel 

systems) is complicated; many factors (cost for arithmetic and 

communication) effect the execution time.

• Available information for modeling is usually limited.

• Verifying models is also not easy; comparison with actual 

(measured) timing results is impractical in some cases.
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Related work
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• Dackland et al., 1996:

Performance modeling of the routine in ScaLAPACK by 

accumulating the estimation of low-level routines. 

(Model parameters was configured by theoretical performance 

of the target system and experiments.)

• J. Demmel et al., 2012: 

Performance model was used for evaluating the effectiveness 

of CA-QR/LU factorization on future machines. 

(Model was simple, and parameters was determined from 

expected theoretical peak performance.)

• A. Calotoiu et al., 2013: 

General techniques for empirical performance modeling

(Automatically selecting basis functions in model based on 

sampling data)
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Overview of this study
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 Motivation 

• During the development of the EigenExa eigensolver on the K 

computer, we have accumulated a lot of measured timing data.

• For a certain program, comparison of different approaches to 

performance modeling has not been sufficiently investigated.

 Contribution 

• For the tridiagonalization routine in EigenExa (named eigen_trd), 

we attempt to construct performance models.

• We consider four approaches to performance modeling and 

evaluate them by comparing with measured timing data.

• We also present some observations from measured data, which 

will be informative for further research for modeling.
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Overview of eigen_trd



Overview of EigenExa
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 EigenExa eigensolver (main developer: T. Imamura)

• Target problem: real symmetric dense eigenvalue problem

• Target system: K computer and post-petascale systems

• Two driver routines:

 eigen_s: traditional approach based on tridiagonalization

 eigen_sx: new approach employing penta-diagonalization

forward transformation

divide & conquer

back transformation

Evaluation using 4,800 nodes of Oakleaf-FX 

supercomputing system @ The Univ. of Tokyo

(T. Fukaya & T. Imamura, PDSEC2015)
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Overview of eigen_trd
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 eigen_trd: tridiagonalization routine in EigenExa

• Transform an input symmetric matrix into a tridiagonal matrix 

using orthogonal Householder transformations. 

• Employs Dongarra’s method to reduce the memory access cost 

in symmetric matrix-vector multiplications.

A
M

do i=1, M

computing_u(…)

mat_vec_mult(…)

computing_v(…)

end do

mat_mat_mult(…)
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Arithmetic & communication cost
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Computation
#flops 

per 
process

MPI_Bcast

( 𝑃 processes)

MPI_Allreduce

( 𝑃 processes)

#issues #words #issues #words

computing_u 𝑂
𝑁2

𝑃
2𝑁

𝑁2

𝑃
𝑁 𝑂(𝑁)

mat_vec_mult
2𝑁3

3𝑃
2𝑁

𝑁2

𝑃

computing_v 𝑂
𝑁2

𝑃
𝑁

𝑁2

2 𝑃
2𝑁 𝑂(𝑁)

mat_mat_mult
2𝑁3

3𝑃

process grid in EigenExa

(𝑁: matrix size, 𝑃: # of processes, process grid: 𝑃 × 𝑃)
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Measured results 

on the K computer



Evaluation conditions
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Item Specification/values

CPU SPARC64 VIIIfx (2.0GHz, 8cores)

Memory DDR3 SDRAM (64GB/s)

Node 1 CPU  and 16 GB memory

Network Torus fusion 6D mesh/torus (Tofu), 5 GB/s/link, bidirectional

System 88,128 nodes (compute nodes: 82,944)

Peak FLOPS/system 11.28PFLOPS

 Specifications of the K computer

 Evaluation conditions (for details, see our paper)

• Fujitsu Fortran90 (mpifrtpx) compiler with “-Kfast,openmp –Cpp –Cfpp” and 

Fujitsu BLAS/LAPACK MPI libraries.

• Test matrix: 𝐴𝑖,𝑗 = 𝑁 + 1 −max(𝑖, 𝑗)
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Measured timing data
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Totally 60 timing results of eigen_trd on the K computer
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Difficulty in detailed measurement
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subroutine function1(…)

MPI_Barrier(…)   --- (*)

t1 = MPI_Wtime()

[computation]

MPI_Barrier(…) --- (**)

ct1 = MPI_Wtime()

MPI_Allreduce(…)

MPI_Barrier(…) --- (**)

ct2 = MPI_Wtime()

g_ctime1 = g_ctime1 + (ct2 – ct1)

[computation]

MPI_Barrier(…) --- (*)

t2 = MPI_Wtime()

g_time1 = g_time1 + (t2 – t1)

end subroutine

Effect of synchronization on the 

measured timing results.

• Case 1: no barrier

• Case 2: barrier at (*)

• Case 3: barrier at (*) & (**)

Total execution time (N=50.000)
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Variation of measured time on each rank
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• Case 1: no barrier

• Case 2: barrier at (*)

• Case 3: barrier at (*) & (**)

N=50,000   P=1,024

(normalized by the value of 1st  rank in Case 1)
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Variation of measured time on each rank
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• Case 1: no barrier

• Case 2: barrier at (*)

• Case 3: barrier at (*) & (**)

N=50,000   P=1,024

(normalized by the value of 1st  rank in Case 1)
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Variation of measured time on each rank
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• Case 1: no barrier

• Case 2: barrier at (*)

• Case 3: barrier at (*) & (**)

N=50,000   P=1,024

(normalized by the value of 1st  rank in Case 1)

15 / 46



Variation of measured time on each rank
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• Case 1: no barrier

• Case 2: barrier at (*)

• Case 3: barrier at (*) & (**)

N=50,000   P=1,024

(normalized by the value of 1st  rank in Case 1)
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Approaches to 

Performance modeling



Assumption and goal of modeling
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Assumption 

• Target machine is given: K computer, 

information of the machine is limited (in next slides).

• Target program is given: eigen_trd in EigenExa,  

information of the program (computational and communication 

pattern) is already known.

Goal

• matrix size: 𝑁

• number of nodes: 𝑃

Execution time: 

𝑇trd(𝑁, 𝑃)
Model

available information of the target machine and program
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Situations
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We attempt modeling in four situations: 

1. The target machine does not exist: 

only the specifications of the machine are available.

2. Simple benchmark programs can be run using a part of the 

target machine: 

results of BLAS routines and MPI ping-pong are available.

3. Specified benchmark programs can be run using limited 

computational resources:

results of modified version of the target program (without 

MPI routines) and MPI collective routines are available.

4. The target program can be run  using sufficient resources: 

measured results of the target program are available.

In each situation, available information for modeling is different.
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Situation 1



Modeling in Situation 1
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Symbol Item Specification

𝐹 FLOPS/node 1.28 × 1011 (flop/sec)

𝐵𝑀 Memory bandwidth/node 6.40 × 1010 (byte/sec)

𝐵𝑁 Network bandwidth 5.00 × 109 (byte/sec)

𝐿 Network latency 9.20 × 10−7 (sec)

 Specifications of the K computer

 Main idea

𝑇trd 𝑁, 𝑃 = 𝑇flop 𝑁, 𝑃 + 𝑇comm 𝑁, 𝑃

We separately model the time for arithmetic and communication.

time for arithmetic time for communication
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Modeling the time for arithmetic
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𝑇fl𝑜𝑝 = (time for one operation) ⋅ (# of operations)

𝑇fl𝑜𝑝 𝑁, 𝑃 = 𝛾mm ⋅
2𝑁3

𝑃
+ 𝛾mv ⋅

2𝑁3

𝑃

We distinguish between mat-mat and mat-vec. mult.

(compute bound and memory bound)

mat-mat mult. mat-vec mult.

B/F ratio in symmetric mat-vec mult. is  4flops/8bytes.

𝛾mm =
1

𝐹
,  𝛾mv =

2

𝐵𝑀
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Modeling the time for communication
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𝑇p2p 𝑤 = 𝛼 + 𝛽 ⋅ 𝑤
𝑤: data size

𝑇comm 𝑁, 𝑃 = 𝛼 ⋅ 𝑀p2p 𝑁, 𝑃 + 𝛽 ⋅ 𝑊p2p(𝑁, 𝑃)

total number  of issues

We assume MPI_Allreduce and MPI_Bcast are operated 

along with a binary tree.

total amount of data

𝑀p2p 𝑁, 𝑃 = 8𝑁 log2 𝑃,  𝑊p2p 𝑁, 𝑃 =
5𝑁2

2 𝑃
log2 𝑃

𝛼 = 𝐿,   𝛽 =
8

𝐵𝑁
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Obtained model in Situation 1
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𝑇trd 𝑁, 𝑃 =
1

𝐹
+
2

𝐵𝑀
⋅
2𝑁3

𝑃

+ 𝐿 ⋅ 8𝑁 log2 𝑃 +
8

𝐵𝑁
⋅
5𝑁2

2 𝑃
log2 𝑃

Symbol Item Specification

𝐹 FLOPS/node 1.28 × 1011 (flop/sec)

𝐵𝑀 Memory bandwidth/node 6.40 × 1010 (byte/sec)

𝐵𝑁 Network bandwidth 5.00 × 109 (byte/sec)

𝐿 Network latency 9.20 × 10−7 (sec)
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Situation 2



Modeling in Situation 2
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 Benchmark results of BLAS & MPI ping-pong

BLAS ping-pong

 Main idea

We employ the same approach in Situation 1, 

but model parameters are determined from benchmark results.
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Obtained model in Situation 2
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𝑇trd 𝑁, 𝑃 = 𝛾mm + 𝛾mv ⋅
2𝑁3

𝑃

+ 𝛼 ⋅ 8𝑁 log2 𝑃 + 𝛽 ⋅
5𝑁2

2 𝑃
log2 𝑃

Parameter Value

𝛾mm 8.77 × 10−12

𝛾mv 4.23 × 10−11

𝛼 1.23 × 10−5

𝛽 5.06 × 10−9

B/F ratio in dsymv is 

1/2 that in dgemv.

By LS fitting.

BLAS

ping-pong

27 / 46



Situation 3



Modeling in Situation 3
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 Execution of specified benchmark program

• A modified version of eigen_trd without MPI routines

(Program can finish, but result is nonsense.)

• MPI collective routines using 𝑃 processes.

 Main idea

𝑇trd 𝑁, 𝑃 = 𝑇flop 𝑁, 𝑃 + 𝑇al 𝑁, 𝑃 + 𝑇bc 𝑁, 𝑃

time for MPI_Allreduce time for MPI_Bcast

• 𝑇flop 𝑁, 𝑃 is directly measured by the modified program. 

• 𝑇al 𝑁, 𝑃 and 𝑇bc 𝑁, 𝑃 are modeled using the benchmark 

results of MPI collective routines.
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Time of MPI collective routines
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total number  of issues total amount of data

• 𝑇al 𝑁, 𝑃 = 𝛼al 𝑃 ⋅ 5𝑁 + 𝛽al 𝑃 ⋅
𝑁2

𝑃

• 𝑇bc 𝑁, 𝑃 = 𝛼bc 𝑃 ⋅ 3𝑁 + 𝛽bc 𝑃 ⋅
3𝑁2

2 𝑃

We determine the model parameters from benchmark results.

MPI_Allreduce MPI_Bcast
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Obtained model in Situation 3
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𝑇trd 𝑁, 𝑃 = 𝑇flop 𝑁, 𝑃

+ 𝛼al 𝑃 ⋅ 5𝑁 + 𝛽al 𝑃 ⋅
𝑁2

𝑃

+ 𝛼bc 𝑃 ⋅ 3𝑁 + 𝛽bc 𝑃 ⋅
3𝑁2

2 𝑃

Measured

𝛼∗∗( 𝑃) 𝛽∗∗( 𝑃)

𝑃 𝑃

MPI_Allreduce

MPI_Bcast
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Situation 4



Modeling in Situation 4
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 A number of measured timing results of eigen_trd
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Set 1 Set 2 Set 3

 Main idea

• We construct a model as a linear combination of basis 

functions of 𝑁 and 𝑃: 

𝑇trd 𝑁, 𝑃 =  𝑐𝑖 ⋅ 𝐹𝑖 𝑁, 𝑃 .

• We determine the model parameters by LS fitting using the 

sample data.
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Obtained model in Situation 4
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𝑇trd 𝑁, 𝑃 = 𝑐1 ⋅
𝑁3

𝑃
+ 𝑐2 ⋅ 𝑁 log2 𝑃 + 𝑐3 ⋅

𝑁2

𝑃
log2 𝑃

Sample data: (𝑇𝑘 , 𝑁𝑘 , 𝑃𝑘) 𝑘 = 1,…𝐾

min
𝑐1,𝑐2,𝑐3

 

𝑘=1

𝐾
𝑇𝑘 − 𝑇trd 𝑁𝑘 , 𝑃𝑘

𝑇𝑘

2

Set 𝒄𝟏 𝒄𝟐 𝒄𝟑

1 4.06 × 10−11 5.10 × 10−5 4.18 × 10−8

2 4.07 × 10−11 5.58 × 10−5 3.41 × 10−8

3 4.01 × 10−11 5.21 × 10−5 3.92 × 10−8
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Summary of modeling 

in each situation



Summary of modeling in each situation
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Model form Features Required resources

1
𝑇flop 𝑁, 𝑃

+ 𝑇comm(𝑁, 𝑃)
• Parameters: determined from specifications Nothing

2
𝑇flop 𝑁, 𝑃

+ 𝑇comm(𝑁, 𝑃)

• Parameters: determined from benchmark

results of BLAS & MPI ping-pong
2 nodes

3
𝑇flop 𝑁, 𝑃

+ 𝑇al 𝑁, 𝑃
+ 𝑇bc(𝑁, 𝑃)

• 𝑇flop: measured by modified eigen_trd

• Parameters: determined from benchmark 

results of MPI collective routines

Up to 𝑃 nodes

4  
𝑖=1

3

𝑐𝑖 ⋅ 𝐹𝑖(𝑁, 𝑃)
• Parameters: determined by LS fitting using 

sample data

Depending on

sample data
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Evaluation of 

the performance models



Evaluation metric
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relative error =
estimated time − (measured time)

(measured time)

 Compare the estimation with measured timing data

accurate

Estimation is small

Estimation is large
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Evaluation of the model in Situation 1
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Model form Features Required resources

1
𝑇flop 𝑁, 𝑃

+ 𝑇comm(𝑁, 𝑃)
• Parameters: determined from specifications Nothing

• Accurate modeling using 

only the specifications is 

quite difficult.

• Estimation by the model is 

much smaller than the 

actual time.

(Because theoretical 

performance was used.) 
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Evaluation of the model in Situation 2
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Model form Features Required resources

2
𝑇flop 𝑁, 𝑃

+ 𝑇comm(𝑁, 𝑃)

• Parameters: determined from benchmark

results of BLAS & MPI ping-pong
2 nodes

• Estimation error is about 

20% for some cases.

• Error tends to be larger 

when P is large and N is 

small. 

(Difficulty of estimation of 

communication cost?)
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Evaluation of the model in Situation 3
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Model form Features Required resources

3
𝑇flop 𝑁, 𝑃

+ 𝑇al 𝑁, 𝑃
+ 𝑇bc(𝑁, 𝑃)

• 𝑇flop: measured by modified eigen_trd

• Parameters: determined from benchmark 

results of MPI collective routines

Up to 𝑃 nodes

• For all cases excepting P is 

large and N is small, 

estimation is accurate.

(error is in 5~10%.)

• One of main reasons for 

accurate estimation would 

be the measurement of the 

time for 𝑇flop.
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Evaluation of the model in Situation 4
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Model form Features Required resources

4  
𝑖=1

3

𝑐𝑖 ⋅ 𝐹𝑖(𝑁, 𝑃)
• Parameters: determined by LS fitting using 

sample data

Depending on

sample data

• For every case, estimation is 

very accurate.

(error is within 10%)

Sample data used for fitting
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Effect of sample data set in Situation 4
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• No significant differences are 

found. 

(Differences of sample data set 

rarely impacted the accuracy of 

estimation.)
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Overall comparison
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Model 1 Model 2

Model 3 Model 4 (data set 1)
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Conclusion



Summary and future work
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• We attempted to model the performance of eigen_trd

(tridiagonalization routine) in EigenExa on the K computer.

• We considered 4 situations, where different limited information 

is available for performance modeling.

• We evaluated the estimation by each model comparing with the 

measured timing data.

• Evaluation with other dense matrix computation and on other 

computer systems remains to be investigated.

Specifications Simple benchmark

(BLAS & ping-pong)

Specified benchmark

(modified program & 

MPI collective routine)

Fitting using 

measured sample data
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