Effective Machine Learning Based Format Selection and Performance Modeling for SpMV on GPUs

Israt Nisa*, Charles Siegel+, Aravind Sukumaran Rajam*, Abhinav Vishnu+, P. Sadayappan*

*The Ohio State University

*Pacific Northwest National Laboratory

Sparse Matrix-Vector Multiplication

$$Ax = y$$

Vector x (Nx1) Vector y(Mx1)

Input Matrix A(MxN)

Applications of SpMV

Recent Formats of SpMV

Recent Works on Format Selection and Performance Modeling

Classification

- Decision Tree Li et al. (PLDI-2013), Sedaghati et al. (ICS 2015)
- Support Vector Machine (SVM)— Benatial et al. (ICPP 2016)
- Deep learning Zhao et al. (PPoPP 2018), Cui et al. (MCSoC 2016)

Performance modeling

- Analytical modeling Zhao et al. (HPCA 2011), Zardoshti et al. (J-SC 2016), Guo et al. (CC 2015)
- Multi Layer Perceptron (MLP) Benatia et al. (ICPADS 2016)
- Support Vector Regression (SVR) Benatia et al. (ICPADS 2016)

Problems addressed

- 1. A model to efficiently predict the best-performing format for a unseen sparse matrix for GPU
- 2. Can the SpMV execution time for an unseen sparse matrix be effectively predicted for various representation formats?

Performance Variation across formats on GPU P100

How about all matrices from the Florida repository?

	Avg. slowdown	>2x slowdown
coo	3.37	2077
ELL	12.43	1154
CSR	2.29	362
НҮВ	3.28	1521
CSR5	1.60	362
merged CSR	1.42	104

Can we use 1 format for all matrices?

Avg. slowdown	>2x slowdown
3.37	2077
12.43	1154
2.29	362
3.28	1521
1.60	362
1.42	104
	3.37 12.43 2.29 3.28 1.60

Can we use 1 format for all matrices?

Avg. slowdown	>2x slowdown	
3.37	2077	
12.43	1154 Un to 4v s	lowdown
2.29	<i>Op to 4x s</i>	lowdown
3.28	1521	
1.60	362	
1.42	104	
	3.37 12.43 2.29 3.28 1.60	3.37 2077 12.43 Up to 4x s 2.29 3.28 1.60 362

Performance Variation in Advanced formats!

matrix	n_rows	n_cols	nnz_tot	CSR5_flops	mergeCSR flops
rgg_n_2_19_s0	524,288	524,288	6,539,532	22	21
auto	448,695	448,695	6,629,222	18	15

auto

Performance Variation in Advanced formats!

matrix	n_rows	n_cols	nnz_tot	CSR5_flops	mergeCSR flops
rgg_n_2_19_s0	524,288	524,288	6,539,532	22	21
auto	448,695	448,695	6,629,222	18	15

rgg_n_2_19_s0

auto

GFLOPS is
Not a
function
of nnz!

Sparse Matrix Storage Formats

Sparse matrix

Sparse Matrix Storage Formats

Sparse matrix

row_ind	0	0	1	2	2	2	2	3
col_ind	0	2	2	0	1	2	3	2
val	а	b	С	d	е	f	g	h

a) COO representation

row_ptr	0	2	3	7	8			
col_ind	0	2	2	0	1	2	3	2
val	а	b	С	d	е	f	g	h

22

b) CSR representation

Sparse Matrix Storage Formats

b a col val ind 0 g h **ELL** representation col val a C Tile 1: ind d b Tile 2: 3 col val е ind h

d) CSR5 representation (w=2, s=2)

SpMV Format Selection Problem

Matrix Features

X	X	X		
		X		X
				X
	X	X	X	X
		X		X
X		X		

a₁ a₂ a₃ a₄ a₅

nnz = 14 nnz_mu = 2.3 density = .58

X	x	x		
		X		X
				x
	x	x	x	x
		x		x
X		X		

a₅

a₁ a₂ a₃ a₄

Complexity O(1)

nnz nnz_mu density

X	x	x		
		x		X
				x
	x	x	x	x
		x		x
X		X		

a₁ a₂ a₃ a₄ a₅

Complexity O(nnz)

nnz_max = 4 nnz_sigma = .95

×	×	x		
		×		×
				X
	×	×	×	×
		X		X
×	×	×		

row 1 block count 1

X	X	X		
		X		X
				X
	X	X	X	
		X		X
X	X	X		

row 2 block count 2

X	X	X		
		X		X
				X
	X	X	X	
		X		X
X	X	X		

row 3 block count 1

X	X	X		
		×		X
				X
	X	X	X	
		X		X
×	X	X		

Complexity O(nnz)

row 1 block count 1

• • •

• • •

X	×	X		
		×		×
				X
	X	X	X	X
		X		×
X	X	X		

Matrix Features

set	feature	description	
	rows, cols	number of rows and columns	
1 -	nnz	number of non zero elements	
	nnz_mu	average nnz per row	
	density	density of the matrix	
	nnz_max	maximum number of nnz in a row	
	$\mathrm{nnz_sigma}$	standard dev. of nnz per row	
	row_block_count_*	avg. and std. deviation of the number	
		of continuous nnz chunk per row	
	row_block_size_*	avg. and std. deviation of the size	
	TOW_DIOCK_SIZE_	of continuous nnz chunks in a row	
	block_count	total number of the continuous	
3	DIOCK_COUIT	nnz chunks	
3	row_block_count_*	min and max of the number of	
	TOW_DIOCK_COUIT_	continuous nnz chunks in a row	
	row_block_size_*	min and max of the size	
	TOW_DIOCK_SIZE_	of continuous nnz chunks in a row	

Machine Learning Models

Base models:

- Decision Tree (D. Tree)
- Support Vector Machine (SVM)
- Multi-layer Perceptron (MLP)

Ensemble models:

- Gradient Boosted Decision Tree (XGBoost)
- MLP Ensemble (MLP ens.)

Machine Learning Models – Decs. Tree

Machine Learning Models - SVM

Source from: https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72

Machine Learning Models - SVM

Source from: https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72

Machine Learning Models - SVM

Source from: https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72

Machine Learning Models- Boosted D. Tree

- Each tree tries to minimize error from the previous tree in a sequential manner
- Final decision: Dtree1(x) + Dtree1(x) + Dtree1(x) + ... + DtreeN(x)

Machine Learning Models - MLP

Machine Learning Models – MLP ensemble

Final Prediction can be maximum, minimum, median or average

Classification using ML Algorithms

Classification Accuracy on Basic 6 Formats

		5 features - O(1)				11 features - Sedaghati et al.			
Machine	precision	Decs. Tree	SVM	MLP	XGBST	Decs. Tree	SVM	MLP	XGBST
К80с	single	60%	62%	62%	67%	81%	83%	83%	85%
	double	64%	63%	64%	68%	81%	85%	85%	88%
P100	single	65%	65%	67%	69%	79%	83%	82%	84%
	double	63%	65%	67%	69%	81%	83%	84%	86%

Classification accuracy on basic 6 formats: COO, ELL, CSR, HYB, CSR5 and merged-based CSR using feature sets 1 and 2 consisting of 11 features used in Sedaghati et el.

Classification Accuracy on Basic 6 Formats

		11 features - Sedaghati et al.				17 features			
Machine	precision	Decs. Tree	SVM	MLP	XGBST	Decs. Tree	SVM	MLP	XGBST
К80с	single	81%	83%	83%	85%	78%	83%	83%	85%
	double	81%	85%	85%	88%	82%	85%	85%	88%
P100	single	79%	83%	82%	84%	79%	83%	82%	84%
	double	81%	83%	84%	86%	79%	83%	83%	85%

Classification accuracy on basic 6 formats: COO, ELL, CSR, HYB, CSR5 and merged-based CSR using feature sets 2 and 3

K80c - single precision

K80c - double precision

P100 - single precision

P100 - double precision

Classification using Top 7 features

		17 features				Imp. (Top 7) features			
Machine	precision	Decs. Tree	SVM	MLP	XGBST	Decs. Tree	SVM	MLP	XGBST
К80с	single	78%	83%	83%	85%	79%	85%	83%	85%
	double	82%	85%	85%	88%	83%	87%	86%	88%
P100	single	79%	83%	82%	84%	77%	83%	83%	84%
	double	79%	83%	83%	85%	79%	84%	85%	86%

Classication accuracy on basic 6 formats: COO, ELL, CSR, HYB, CSR5 and merged-based CSR using feature sets 2 and Imp. features

Performance Modeling of SpMV using ML Algorithms

Performance Modeling

- Conventional methods are based on analytical modeling
- GPU's complicated architecture
- Detailed knowledge of the architecture required
- Can simple ML algorithms also predict performance of various SpMV formats?

Average Relative Mean Error (RME)

Average relative mean error (RME) of 6 formats using MLP and ML ensemble regressor on Tesla K80c and Tesla P100 GPU using double precision data type

RME for Each Format

Relative mean error (RME) achieved by each 6 formats using MLP ensemble regressor on Tesla K80c and Tesla P100 GPU using double precision data type

Conclusion

- XGBoost achieves the highest classification accuracy
- List of 7 features which are sufficient to provide the best classification accuracy
- MLP-ens, a simple neural network model to predict the performance of a given input matrix

Thank you!