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Sparse	Matrix-Vector	Multiplication
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Applications	of	SpMV
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Linear	Algebra

Fluid	DynamicsGraph	Analytics

Deep	Learning eigenvalue 
problems



Recent	Formats	of	SpMV
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clSpMV-2012
Su	et	al.Adaptive-2016

Zardoshti et	al.

CSR5-2015
Liu	et	al.

merge-spmv-2012
Duan et	al.

Adaptive-CSR-2015
Mayank et	al.

HolaSpMV-2017
Steinberger	et	al.

yaSpMV-2014
Yan	et	al.

lightspmv-2015
Liu	et	al.

CSR,	ELL-2009
Bell	et	al.

Yet,	no	absolute	
winner!



Recent	Works	on	Format	Selection	and	
Performance	Modeling

Classification
• Decision	Tree	– Li	et	al.	(PLDI-2013),	Sedaghati et	al.	(ICS	2015)		
• Support	Vector	Machine	(SVM )– Benatial et	al.	(ICPP 2016)
• Deep	learning	– Zhao	et	al.	(PPoPP 2018),	Cui	et	al.	(MCSoC 2016)

Performance	modeling
• Analytical	modeling	– Zhao	et	al.	(HPCA 2011),	Zardoshti et	al.	(J-SC	2016),	Guo et	
al.	(CC	2015)

• Multi	Layer	Perceptron	(MLP)	– Benatia et	al.	(ICPADS 2016)
• Support	Vector	Regression	(SVR)	– Benatia et	al.	(ICPADS 2016)



1. A	model	to	efficiently	predict	the	best-performing	format	for	a	
unseen	sparse	matrix	for	GPU

2. Can	the	SpMV	execution	time	for	an	unseen	sparse	matrix	be	
effectively	predicted	for	various	representation	formats?
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Problems	addressed



Performance	Variation	across	formats	on	GPU
P100

5/26/18 7

0

5

10

15

20

25

GF
LO

PS

COO ELL CSR HYB merged- based	CSR	 CSR5_time



Performance	Variation	across	formats
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Performance	Variation	across	formats
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Performance	Variation	across	formats

5/26/18 10

0

5

10

15

20

25

GF
LO

PS

COO ELL CSR HYB merged- based	CSR	 CSR5_time

2.35x	

1x	



Performance	Variation	across	formats
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Performance	Variation	across	formats
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Performance	Variation	across	formats
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Performance	Variation	across	formats
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Performance	Variation	across	formats
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Avg.	slowdown >2x	slowdown

COO 3.37 2077

ELL 12.43 1154

CSR 2.29 362

HYB 3.28 1521

CSR5 1.60 362

merged	CSR 1.42 104
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How	about	all	matrices	from	the	Florida	
repository?



Can	we	use	1	format	for	all	matrices?

Avg.	slowdown >2x	slowdown

COO 3.37 2077

ELL 12.43 1154

CSR 2.29 362

HYB 3.28 1521

CSR5 1.60 362

merged	CSR 1.42 104
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Can	we	use	1	format	for	all	matrices?

Avg.	slowdown >2x	slowdown

COO 3.37 2077

ELL 12.43 1154

CSR 2.29 362

HYB 3.28 1521

CSR5 1.60 362

merged	CSR 1.42 104
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Up	to	4x	slowdown



Performance	Variation	in	Advanced	formats!
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matrix n_rows n_cols nnz_tot CSR5_flops mergeCSR flops

rgg_n_2_19_s0 524,288 524,288 6,539,532 22 21

auto 448,695 448,695 6,629,222 18 15

rgg_n_2_19_s0 auto



Performance	Variation	in	Advanced	formats!
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matrix n_rows n_cols nnz_tot CSR5_flops mergeCSR flops

rgg_n_2_19_s0 524,288 524,288 6,539,532 22 21

auto 448,695 448,695 6,629,222 18 15

rgg_n_2_19_s0 auto

GFLOPS is	
N𝒐𝒕	𝒂	

𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏	
𝒐𝒇	𝒏𝒏𝒛!



Sparse	Matrix	Storage	Formats
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Sparse	Matrix	Storage	Formats
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Sparse	Matrix	Storage	Formats
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SpMV	Format	Selection	Problem
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Matrix	Features
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Matrix	Features	– Feature	set	1

rows	=	6



5/26/18 27

cols	=	5

Matrix	Features	– Feature	set	1
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Matrix	Features	– Feature	set	1

nnz	=	14
nnz_mu =	2.3
density	=	.58
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Matrix	Features	– Feature	set	1

nnz
nnz_mu
density

Complexity
𝜪(𝟏)
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Matrix	Features	– Feature	set	2

nnz_max =	4
nnz_sigma =	.95

Complexity
𝜪(𝒏𝒏𝒛)
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Matrix	Features	– Feature	set	3

row	1	block	count 1
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row	2	block	count 2

Matrix	Features	– Feature	set	3
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row	3	block	count 1

Matrix	Features	– Feature	set	3
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row	1	block	count 1
…
…

Complexity
𝜪(𝒏𝒏𝒛)

Matrix	Features	– Feature	set	3



Matrix	Features
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Machine	Learning	Models

Base	models:
• Decision	Tree	(D.	Tree)
• Support	Vector	Machine	(SVM)
• Multi-layer	Perceptron	(MLP)

Ensemble	models:	
• Gradient	Boosted	Decision	Tree	(XGBoost)
• MLP	– Ensemble	(MLP	ens.)
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Machine	Learning	Models	– Decs.	Tree
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Machine	Learning	Models	- SVM
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Source	from:	https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72



Machine	Learning	Models	- SVM
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High	regularization	
parameter

Source	from:	https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72
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Machine	Learning	Models	- SVM

High	GammaLow	Gamma

Source	from:	https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72
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Machine	Learning	Models- Boosted	D.	Tree

Dtree 1 Dtree NDtree 2

+ + +
…

• Each	tree	tries	to	minimize	error	from	the	previous	tree	in	a	sequential	manner
• Final	decision:	Dtree1(x)	+	Dtree1(x)	+	Dtree1(x)	+	… +	DtreeN(x)	
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… … …

Machine	Learning	Models	- MLP

Xi:	Input	layers

ai,	bi:	Hidden	 layers
Each	neuron	computes:
w1a1 +	w2a2 +	…+	wNaN
w1a1	followed	by	 non-
linear	activation	function

y=f(x):	Output	 layers
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Machine	Learning	Models	– MLP	ensemble

y=f(x)
Final	Prediction
can	be	maximum,	

minimum,	median	or	
average



Classification	using	ML	Algorithms

5/26/18 44



Classification	Accuracy	on	Basic	6	Formats

5	features	- O(1)	 11	features	- Sedaghati et	al.	

Machine precision Decs.	Tree SVM MLP XGBST Decs.	Tree SVM MLP XGBST

K80c
single 60% 62% 62% 67% 81% 83% 83% 85%

double 64% 63% 64% 68% 81% 85% 85% 88%

P100
single 65% 65% 67% 69% 79% 83% 82% 84%

double 63% 65% 67% 69% 81% 83% 84% 86%
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Classification	accuracy	on	basic	6	formats:	COO,	ELL,	CSR,	HYB,	CSR5	and	merged-based	CSR	using	
feature	sets	1	and	2	consisting	of	11	features	used	in	Sedaghati et	el.	



Classification	Accuracy	on	Basic	6	Formats

11	features	- Sedaghati et	al.	 17	features	

Machine precision Decs.	Tree SVM MLP XGBST Decs.	Tree SVM MLP XGBST

K80c
single 81% 83% 83% 85% 78% 83% 83% 85%

double 81% 85% 85% 88% 82% 85% 85% 88%

P100
single 79% 83% 82% 84% 79% 83% 82% 84%

double 81% 83% 84% 86% 79% 83% 83% 85%
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Classifcation accuracy	on	basic	6	formats:	COO,	ELL,	CSR,	HYB,	CSR5	and	merged-based	CSR using	
feature	sets	2	and	3



Feature	Importance	
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Feature	Importance	
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K80c	- single	precision



Feature	Importance	
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K80c	- double	precision



Feature	Importance	
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P100	- single	precision



Feature	Importance	
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P100	- double	 precision



Classification	using	Top	7	features

17	features	 Imp.	(Top	7)	features

Machine precision Decs.	Tree SVM MLP XGBST Decs.	Tree SVM MLP XGBST

K80c
single 78% 83% 83% 85% 79% 85% 83% 85%

double 82% 85% 85% 88% 83% 87% 86% 88%

P100
single 79% 83% 82% 84% 77% 83% 83% 84%

double 79% 83% 83% 85% 79% 84% 85% 86%
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Classication accuracy	on	basic	6	formats:	COO,	ELL,	CSR,	HYB,	CSR5	and	merged-based	CSR using	
feature	sets	2	and	Imp.	features



Performance	Modeling	of	SpMV	using	ML	Algorithms
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Performance	Modeling

• Conventional	methods	are	based	on	analytical	modeling	
• GPU’s complicated	architecture
• Detailed	knowledge	of	the	architecture	required
• Can	simple	ML	algorithms	also	predict	performance	of	various	SpMV	
formats?	
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Average	Relative	Mean	Error	(RME)
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Average relative mean error (RME) of 6 formats using MLP and ML ensemble regressor on 
Tesla K80c and Tesla P100 GPU using double precision data type
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Conclusion

• XGBoost achieves	the	highest	classification	accuracy	
• List	of	7	features	which	are	sufficient	to	provide	the	best	classification	
accuracy

• MLP-ens,	a	simple	neural	network	model	to	predict	the	performance	
of	a	given	input	matrix	
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Thank	you!

5/26/18 58


