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Center for Scientific Computing

SPRACE Openlab

GridUnesp

High Performance  High Energy Physics Digital Social
Computing = CMS / CERN Innovation
= First Campus Grid in = Search for DM " Cloud Computing
Latin America .
= Tier-2 of WLCG = Code Parallelization
= HPC for 400+ users : :
= |nstrumentation = Machine Learning

= SDN




Intel R&D Projects

Manycore Testing Lab
0 First manycore testing lab outside US
0 First hands-on activities with Xeon Phi

Intel Parallel Computing Center
0 Parallelization of Geant code

0 Broad impact
= HEP + Dosimetry + Radiation-hard electronics

0 Goals
= Develop GeantV: massive parallelism natively
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Intel Modern Code Program (IMC)
0 1700+ students trained
0 7 International training events

O 26 tutorials at Brazilian Institutions

CoE in Machine Learning
0 R&D, consulting, and training in ML
0 High Energy Physics (boosted jets)
0 SERPRO, DataPrev, Banks, City Halls, etc.




Motivations

Apply Machine Learning techniques on data about the execution of applications in order to
predict the performance

Static:
= Parameters
= Input and Output Data job
= Scheduler trace information
Amount of resources chosen;
Type of resources
Execution time

Submit
Job

l

(Slurm, Condor, etc)

Wait Time Scheduler
Cluster
0 Dynamic:
= Profilers
Vtune, Advisor, perf, ... Recomendation

Model Historical
Execution Data

= Performance Monitoring Units (PMU)




Motivations

Predict the performance of applications is useful for several areas
o Jobscheduling

= Anyinformation about performance can increase the quality of job scheduling
0 Runtime Decisions

= Change the execution plan of applications

Increase amount of threads, migrate to another resources, etc
0 Guide optimization
U Predict the performance that different combinations of optimizationscan present on the same architecture

o Understand the impact of computational architecture resources on an application
"My code will run faster on a new generation of Intel processor?"



Performance Prediction - Approaches

Knowledge about application’s input Data

o Several small kernels are used to obtain a pattern about performance of each phase (hotspot) of
application

= Each hotspot profile is compare againstother similar profilesin a dataset to infer the performance

0 Iterative applications
= Measure the execution time of each iteration across different resources

o Machine learning methods to approximate input data to execution time
o Combination between input data and hardware events

0 Based on the execution using only small set of resources, predict the scalability on a huge amount of
resources



Performance Prediction - Approaches

Knowledge about application's Source Code

0 include annotation in source code in order to model performance
= Intel Advisor (Thread Analysis)

o Compile with LLVM compiler to characterize the performance of applications on different architectures

o Static analysis of memory model to predict performance
= compilers provides performance reports by default
= Directives can improve this reports



Performance Prediction - Approaches

Analysis based model based on simulation

o Transform source code into an application model describing its computation and communication
behavior,

= Execute the application model on a simulated HPC architecture for performance analysis.

o Static analysis of source code and analytical evaluation to predict performance
= "COMPASS: A Framework for Automated Performance Modelingand Prediction"



Performance Prediction - Challenge

Performance prediction transparent for the user
o No access to source code

= Without directives, annotations, or special compilationsdirectives ( -g for instance)

0 No relation between Input data and performance need to be informed by the user

o Time limit constraint
= We want to deliver this prediction executing only a small fraction of application
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Performance Prediction -Challenge

Applications typically perform very different on different architectures
Several combination of optimizations can be used for the same application

For each architecture a very different binary code with different behavior can be generated
" avx, avx2,avx512, ...

Performance Monitoring Units very different across architectures

Skylake
SandyBridge - :
Source How to identify patterns to
Cod Compilation " Haswell . .. .
ode — learn how an application will
Several Optimization behave on each architecture?
Options Power

Optimized Versions
for each Architecture
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Performance Model

Memory System « GB/S .
Yoy . > | Parallel Processor
Higher RAM
Bandwidth Corel|..|CoreN
13 Amount of data
Transfered per GFLOPS
Second
L2
Amount
v L1 of Operations
Lower per Second
Bandwidth GFLOPS: Giga Flop Operationsper Second
Balance between processing and transfer: GFLOPs: Giga Flop Operations
* Higher GFLOPS Demands more GB/S
* Lower GLOPS limits potential GB/s
How to Measure such Balance? "Memory bandwidth and machine balance in high
Arithmetic Intensity (Al): Ratio between work performance computers” John D. McCalpin. IEEE TCCA 1995.

ierformed and data transfered: Floi/Bite.



Performance Model

Roofline Model: [1] [1] Samuel Williams, Andrew Waterman, and David

- Visualization of how far the performance of functions if from theoretical Patterson. R°°f.""e: an '".s'ghtﬂ" visual performance
model for multicore architectures. Commun. ACM 52,

limits (ceiling) 4 (April 2009)
- Guide optimization using hardware profiling [2]

[2] A Top-Down Method for Performance Analysis

CPU Capacity and Counters Architecture, Ahmad Yasin. ISPASS 2014

A=B+C A=B*C+D*E A=COS(C)+COS(D*E*F) + G

—

Teorically Alis unchangeable by optimization

GFLOPS

. \ Functions Arithmetic Intensity (Al) can vary according to the architecture

Al (Flop/Byte)
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Performance Prediction - Challenge

User'sJob:
Several versions of the same code
One for each:

* Architecture/Optimization
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Submit Job

Py,
N/
Ct,'o
N

Scheduler

Resource 1

(Slurm, Condor, etc)

Resource N

Pre-Scheduler

Profiling

Performance

Model

Performance Prediction
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ools for PMU and Roofline

Tools for Roofline:
o Spiral : http://www.spiral.net/software/roofline.html

0 Empirical Roofline Tool (ERT): https://crd.lbl.gov/departments/computer-
science/PAR/research/roofline/software/ert/

0 Intel Advisor: https://software.intel.com/en-us/advisor

Collect hardware events from PMU
o Linux Perf: https://perf.wiki.kernel.org/index.php/Main Page

o likwid: http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid/
o Intel Vtune: https://software.intel.com/en-us/vtune

5/23/2019

15



Preliminary Evaluation

Workload The strategy inputs:
o A matrix multiplication (Intel Intrinsics); o Application:
a A numeric model in finance (AVX-512 = One or more optimized version for each code;

Exponentials and Reciprocals);

o A N-Body simulation (Vectorized); o ) -
o _ Statistical analysis of profiling:
o A Diffusion simulation (Scalar).

o Vtune
Set of architectures = HPC characterization
o Different Intel Xeon Generations: = Memory Access
= Sandy Bridge (2013) = Memory Consumption
= Haswell (2015) 0 Advisor

= Skylake (2017) " Roofline
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Execution Time

Application Skylake
Finance 445,77
nbody_v1 172,15
nbody_v2 43,36
matrix mkl 27,3
matrix intrinsics 77,73
matrix multiplication 42,76
matrix vl 48,48
matrix v2 42,58
matrix v3 32,8
matrix v4 33,07
diffusionvl 64,53
diffusionv2 60,54
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Execution Time (Seconds)

962,19 3.443,56
544,52 1.637,79
76,05 222,89
48,7 152,71
139,81
62,68
64,63
66,19
37,43 55,39
36,78 58,73
:
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Compiler parametrization

Compiler presents several parametrization that influences performance
0 Ex:-zmm: high X low (for Skylake)

= Defines alevel of zmm registers usage (AVX-512).

= The low setting causes the compiler to generate code with zmm registers very carefully, only when the gain from
their usage is proven.

= The high setting causes the compiler to use much less restrictive heuristics for zmm code generation.

= Which option (high X low) provides best results for each application?
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Compiler parametrization

Applications

Finance
diffusionvl
diffusion v2
matrixv3
matrix v4
matrix mkl
nbody_v2
matrix vl
matrix v2

matrix
intrinsics
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(Speedup /

slowdown) low
againt high
1,63
1,17
1,24
1,60
1,56
0,96
0,91
0,88
0,93

0,99

62,09
8,32
13,05
8,23
21,54
10,02
60,00
-30,69
-18,81

-3,80

FP FP
Arith/Mem Arith/Mem
Wr Instr. Rd Instr.
Ratio Ratio
0,08 9,24 1,19
0,00 0,12 0,06
0,00 -0,05 0,04
0,00 0,05 0,30
0,00 0,04 0,21
0,00 -6,25 -0,12
-0,16 1026,53 2,57
0,00 2,63 -0,13
0,00 2,10 -0,16
0 0 0
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L1 Bound

5,8
0,4
-0,4
7.4
7.4
0,3
-1,8
0,5
1,3

0

L2 Bound

0,7
1,3
0,3
-0,4

0,4
-0,9

-0,5

1

1,6
7,7
0,3
0,4

-0,8

19

0,8
2,4




Rank Architectures

Rank application performance across different architectures

0 Exploring correlation between:
= GFLOPS

indicates how much "work" the application is performing per second (overhead, hazards, latency...)

" Instructions per cycle (IPC)

Indicates the amount of instructions that can be executed per cycle (Metric that shows overhead and
latency)

= Al (Arithmetic Intensity)

Shows how much data have to be transferred in order to execute the application

Stanzani S. et al. (2019) Towards a Strategy for Performance Prediction on Heterogeneous Architectures. In: Senger H. et al. (eds) High
Performance Computing for Computational Science — VECPAR 2018.
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Rank Architectures - Results

Numeric Model in Finance

Architecture Skylake Haswell SandyBridge KNL (FlatMode) KNL (Cache Mode)

Execution Time (Seconds) 458 1036 3443 235

3 2 1 4

Architecture Skylake Haswell

SandBridge KNL (Flat Mode) KNL (Cache Mode)

Execution Time (Seconds) 511 425 1557

3 2 1

Architecture Skylake SandyBridge KNL (Flat Mode) KNL (Cache Mode)

Execution Time (Seconds) 306 1253 343 347
5 3 1 2
Matrix Multiplication (Intrisincs)

344 (1 227
1 2
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Architecture Skylake Haswell SandyBridge KNL (Flat Mode) KNL (Cache Mode)

Execution Time (Seconds) 172

4




Discussion

Asanovic, K. et al. The Landscape of Parallel Computing Research:
A View from Berkeley. UCB/EECS-2006-183, University of

How to choose a representative workload
California, Berkeley, Dec. 18, 2006.

0 Representative applications for HPC:
= For example the "13 dwarfs"

0 Representative range of performance patterns on each architecture

How to model performance of applications with difference phases

) s les f I Application 1 I
How to model impact of: amplesior % ' .
C icati MP| Performance —

0 lIrregularities
o GPUs
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Conclusion

PMU can be very useful to characterize the performance of HPC applications

Performance prediction model based on PMU has the potential to:
0 Improve Data Center resources usage

0 Support job scheduling

As future work:
o We will improve the dataset about application's execution

0 We will investigate how machine learning techniques can help with performance prediction with this
data
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hanks!

Paper, Slides and source code:

https://github.com/silviostanzani/PerformancePrediction

Questions?




