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Background

• Various designs of recent computing systems
–Multi/many-core technology

• 10~100 cores in a processor
– Vector processing technology

• simultaneous calculations of multiple elements
– The number of elements tends to be increased

– Hybrid memory architecture
• High bandwidth memories with the conventional DDR 

memory
– MCDRAM&DDR in KNL, HBM in Volta and SX-Aurora TSUBASA
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It is not easy to judge an appropriate computing system



Background (cont.d)

• Performance tuning are necessary for recent 
computing systems
– A number of system parameters to be tuned due to its 

complexity
• Difficult to find the best parameters in a practical time

– 300+ patterns for all parameter combinations in KNL

– Long time of each application execution
• Execution time of an HPC application tends to increase due 

to more advanced, detailed, precise simulations
• Each execution time drastically affects tuning times

– An app is executed many times to find an appropriate parameter 
sets 
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A brute force approach for various computing systems
and system parameters is not practical



Objective and approach

• Objective
– Reduce the time for processor selection and 

parameter tuning
• An appropriate parameter combination is found in a 

practical time

• Approach
– Select an appropriate computing system in advance

• Predict a bottleneck
• Select computing system to relieve the bottleneck

– Narrow a search space of system parameters
• Select system parameters to solve the bottleneck
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Overview of the proposed method 
1. Database construction

– Understand characteristics of system parameters on systems
• Relationship between each system parameter and performance
• This information used for system parameter selections in Steps 3 and 4

2. Prediction of bottleneck candidate
– Identify bottleneck considering both a computing system and an 

application 
3. Computing system selection

– Select computing systems that might best solve the predicted 
bottleneck

4. System parameter selection
– Select only system parameters that are effective to solve the 

predicted bottleneck
→ Narrow search space of system parameter combinations
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Step1: Database construction
• Understand effects of system parameters on each 

computing system by evaluating benchmarks with 
various parameters
– GEMM

• Identify contribution of each system parameter to computational
performance

– Stream
• Identify contribution of each system parameter to memory 

bandwidth performance
– Any other benchmarks

• Other information can be used for system parameter selection
– Only once when a system is installed

• This cost can be amortized 
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Step2: Bottleneck prediction 

• Identify bottleneck candidates
– Bottleneck is utilized to select an appropriate 

systems and to reduce search space of parameter 
combinations

– How to identify?
• This paper uses Bytes/Flop ratios of a system and an 

app
– Code B/F < System B/F => Computational bound
– Code B/F > System B/F => Memory bandwidth bound

* Code B/F = (necessary data in Byte) / (# floating operations)
* System B/F = (memory bandwidth) / (peak performance)
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Step3: Computing system selections

• What computing system should be select to 
achieve high performance?
– Select only computing systems that are effective 

to solve the predicted bottleneck
• Comp bound=> systems effective to computation
• Mem bound => systems effective to memory
• Characteristics of system parameters are clarified in 

Step 1
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Step4: System parameter selections

• Wat system parameters should be select to 
narrow search space?
– Select only effective parameter combinations 

that solve the predicted bottleneck
• Comp bound=> parameters effective to computation
• Mem bound => parameters effective to memory
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Case study: target application kernels

24 May, 2018 10

Kernels Fields Methods Memory 
access

Mesh
size

Code
B/F

Land mine Electro
magnetic FDTD Sequential 100x750x750 5.15

Earthquake Seismolo
gy

Friction 
Law Sequential 2047x2047x256 4.00

Turbulent Flow CFD Navier-
Stokes Sequential 512x16384x512 0.35

Antenna Electro
magnetic FDTD Sequential 252755x9x97336 0.98

Plasma Physics Lax-
Wendroff Indirect 20,048,000 0.075

Turbine CFD LU-SGS Indirect 480x80x80x10 0.0084
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Case study: four target systems
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Skylake

Nvidia V100

KNL

SX-Aurora TSUBASA



Experimental environments
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Processor SX-Aurora
Type 10B

Xeon Gold 
6126 Tesla V100 Xeon Phi 

KNL 7290

Frequency 1.4 GHz 2.6 GHz 1.245 GHz 1.5 GHz

# of cores 8 12 5120 72

DP flop/s
(SP flop/s)

2.15 TF
(4.30 TF)

998.4 GF 
(1996.8 GF)

7 TF
(14 TF)

3.456 TF
(6.912 TF)

Memory 
subsystem HBM2 x6 DDR4 x6ch HBM2 x4 MCDRAM 

DDR4

Memory BW 1.22 TB/s 128 GB/s 900 GB/s 450+ GB/s
115.2 GB/s

Memory 
capacity 48 GB 96 GB 16 GB 16 GB

96 GB

LLC BW 2.66 TB/s N/A N/A N/A

LLC capacity 16 MB 
shared

19.25 MB 
shared 6 MB shared 1 MB shared 

by 2 cores



Experimental environments cont.

• Configurable system parameters
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Processor SX-Aurora
Type 10B

Xeon Gold 
6126 Tesla V100 Xeon Phi KNL 7290

# threads 1~8 1~12 25~210 72, 144, 216, 288

Thread 
affinity N/A compact, 

scatter N/A compact, scatter, 
balanced

Cluster 
mode N/A N/A N/A a2a, quad, hemi, SNC-

2or4

Memory
mode N/A N/A N/A flat, cache, hybrid

# thread 
blocks N/A N/A 20~216 N/A



Configurable system parameters (1)

• Cluster mode
– Decides how to logically divides tiles and memory into virtual 

regions
– all-to-all

• Not divided into virtual regions
• UMA

– Quadrant, Hemisphere
• Divides into 4 or 2 virtual regions
• UMA
• Smaller latency than all-to-all

– Sub-NUMA Cluster(SNC)-4, SNC-2
• Divides into 4 or 2 virtual regions
• NUMA

– Nume-aware optimization is necessary
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Configurable system parameters (2)

• Memory mode
– Decides how to use MCDRAM and DDR
– Flat mode

• MCDRAM and DDR have the same address space
– An application needs to explicitly allocate data in MCDRAM

– Cache mode
• All MCDRAM is treated as a cache of DDR

– Cache is hardware-managed, so no explicit programming:)

– Hybrid mode
• Combination of flat mode and cache mode

– 25% or 50% of MCDRAM is used as cache.
– Remaining MCDRAM is used as allocatable memory
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Configurable system parameters (3)

• Thread affinity
– Compact

• A thread is assigned to a core as close as possible to its adjacent thread
• Suitable for computation-intensive applications

– Scatter, balanced
• Threads are distributed across all cores as much as possible
• Balanced affinity assigns a close thread to the same core
• Suitable for memory-intensive applications

• Number of threads
– Up to 4 threads can be assigned to one core

• 72, 144, 216, 288 are candidates to use full cores in KNL
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The number of combinations of system parameters reaches 300 



Experimental environments cont.

• Configurable system parameters
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Processor SX-Aurora
Type 10B

Xeon Gold 
6126 Tesla V100 Xeon Phi KNL 7290

# threads 1~8 1~12 25~210 72, 144, 216, 288

Thread 
affinity N/A compact, 

scatter N/A compact, scatter, 
balanced

Cluster 
mode N/A N/A N/A a2a, quad, hemi, SNC-

2or4

Memory
mode N/A N/A N/A flat, cache, hybrid

# thread 
blocks N/A N/A 20~216 N/A

1029 parameter combinations for all computing systems



Step1: Database construction
(DGEMM/Stream performance)

• Aurora: 8 threads
• V100: 512+ blocks & 128+ threads/block

– Hand written code
• KNL: 4 clusters, 72 threads, 

scatter/balanced
• Skylake: 12 threads

• Aurora: 6 threads
• V100: 8192+ blocks & 512+ threads/block
• KNL: 4 clusters, 72 or 144 threads, 

scatter/balanced
• Skylake: 12 threads
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Step2: Bottleneck prediction
Step3: Computing system selections

• This paper predicts the bottleneck using Bytes/Flop
ratios
– System B/F = (memory BW) / (peak flops)

– Code B/F of applications = (necessary data) / (# flops)
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Kernels Code
B/F Selections

Land mine 5.15 SX-Aurora

Earthquake 4.00 SX-Aurora

Turbulent Flow 0.35 Aurora
or V100

Antenna 0.98 V100

Plasma 0.075 V100

Turbine 0.0084 V100

Systems System
B/F

Xeon 0.128

KNL 0.130

Tesla V100 0.128

SX-Aurora 
TSUBASA 0.567



Step3: Computing system selections
Step4: System parameter selections

– Appropriate systems can be selected
– System parameters can be narrowed

• In Land mine, Earthquake, Turbulent flow, Plasma, Turbine, 
the number of the system parameter candidates can be 
reduced to 3, 3, 283, 280, 280 from 1029, respectively.
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Conclusions
• Toward reduction in performance tuning time

– As the numbers of computing systems and system parameters
increase, a long time is necessary for performance tuning

• Approach
– Select appropriate system and narrow a search space of system 

parameters
• Predict a bottleneck and select appropriate system and its system 

parameters 
• Future work

– More detailed evaluations
• Not only the full search but also the conventional tuning algorithms
• Other application such as practical applications
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