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1. Accelerating our molecular dynamics application on modern and future computers.

– viewpoint of computational science

2. Utilizing and comparing modern parallel computers and applications executed on 
them.

– viewpoint of computer science

• What/Where is Auto-Tuning(AT) in this work?

– We think that optimizing and evaluating programs and comparing the performance on 
multiple hardware is very important to AT.

• If there are no differences, AT is not needed.

• If there are significant differences, there are some tuning parameters and criteria.
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• Molecular dynamics (MC) simulations

– essential tool for research in chemistry, physics, biology, and virology

– essential to obtain knowledge about materials at the molecular level, and in designing 
materials with novel functions arising from specific molecular features of the materials

• our target application: MODYLAS

• MOlecular DYnamics software for LArge System

• one of the infrastructure programs in the priority issue 5 supported by FLAGSHIP 2020 
project (post-K computer project)

• mainly developed by researchers in Nagoya University

• free software published on http://www.modylas.org/

• written in Fortran, parallelized by OpenMP and MPI

• While there are many MD programs, MODYLAS aim to obtain good performance on large-
scale computer systems, such as supercomputers.

• previous target hardware was K computer

• To catch up current computers (includes post-K), we have to consider wide SIMD and many 
cores.
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The name of post-K was opened yesterday.
The name is 富岳 (Fugaku), means Mt.Fuji.



• Operational procedures in the fast multipole method of MODYLAS:
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p2p
particle to particle

p2M
particle to multipole

L2p
local to particle

M2M
multipole to multipole

L2L
local to local

M2L
multipole to local

Center of
multipole expansion

Center of
local expansion

Point charges

Multipole expansion Local expansion

Centers of
local expansionCenters of multipole expansion

Ewald summation
for multipoles Two hotspots:

1. calculation of the Lennard-Jones (LJ) and 
short-range part of the Coulombic 
interactions with neighboring atoms in a 
pairwise additive manner (p2p part)

2. calculation of long-range part of the 
Coulombic interactions with distant point 
charges by a combination of the multipole 
expansion and local expansion (especially, 
the M2L part)

Now, we focus on the p2p part.



• Yoshimichi Andoh, Soichiro Suzuki, Satoshi Ohshima, Tatsuya Sakashita, Masao Ogino, 
Takahiro Katagiri, Noriyuki Yoshii, Susumu Okazaki: A thread-level parallelization of 
pairwise additive potential and force calculations suitable for current many-core 
architectures, The Journal of Supercomputing, Vol.74, pp.2449--2469 (2018).

– optimized MODYLAS for modern multi-core/many-core processors

– previous work: K computer (8cores, 128bit SIMD)

– main target: FX100 (32cores, 256bit SIMD)

– sub target: KNC(60cores*4threads, 512bit SIMD)

– developed new OpenMP implementations (next slide) and evaluated the performance

• In this (iWAPT2019) work, how about current Intel's processors?

– SKX: Xeon Scalable Processor, Skylake-SP, AVX-512 (F, CD, ER, PF)

– KNL: Xeon Phi, Knights Landing, AVX-512 (F, CD, VL, DQ, BW)
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algorithm parallel 
granularity of 
each thread

#total processes
Nx*Ny*Nz

1
8x8x8

8
4x4x4

64
2x2x2

512
1x1x1

original 8,000 / Nt 40 40 40 40 40

code1 8,000 Nz / Nt 40Nz 320 160 80 40

code2 8,000 25NxNyNz 12,800 1,600 200 25

code3 8,000 - 200,000 (Nx+4)(Ny+4)Nz 1,152 256 72 25

code4 8000 Nz 25NxNy 1,600 400 100 25

• Average number of atoms in each subcell is assumed to be 40.
• Nx , Ny and Nz are number of subcells distributed to the MPI 

process along the x, y, and z axes, respectively.
• Nt is a given thread number.

maximum number of threads of original algorithm is always 40, 
not enough to fill the all cores of current CPUs

512 processes
all algorithms cannot fill the cores

maximum number of adoptable threads for each algorithm
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i-square
(5x5x1)

j-tower
(1x1x5)

i-cell
(1x1x1)

i-square
(5x5x1)

j-tower
(1x1x5)

j-column

i-square
(5x5x1)

j-tower
(1x1x5)

i-cell
(1x1x1)

i-square
(5x5x1)

j-tower
(1x1x5)

j-column

i-square
(5x5x1)

j-tower
(1x1x5)

j-column j-column

original code1 code2

code3 code4

• differences
• order of loops
• lengths of the OMP and SIMD target loop
• creation tables in sequential, etc.
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!$omp do
do i0=tag(iz,iy,ix), tag(iz,iy,ix)+na_per_cell(iz,iy,ix)-1

i=m2i(i0)
epsilon_sqrt_i0=epsilon_sqrt(paranum(i))
R_half_i0=R_half(paranum(i))
chgv_i0=chgv(paranum(i))
xi=wkxyz(1,i0)
yi=wkxyz(2,i0)
zi=wkxyz(3,i0)
ic=1
stlcx=0.d0
stlcy=0.d0
stlcz=0.d0

! SIMD target
do j0=tag(jzb-2,jyb,jxb), tag(jzb+2,jyb,jxb) &

+ na_per_cell(jzb+2,jyb,jxb)-1
rx=xi-wkxyz(1,j0)
ry=yi-wkxyz(2,j0)
rz=zi-wkxyz(3,j0)
r2=rx*rx+ry*ry+rz*rz
r2_r=1.d0/r2

if(r2<=cutrad2) then
eps=epsilon_sqrt_i0 * epsilon_sqrt_table(ic,iam)

else
eps=0d0

endif !cut-off
R=R_half_i0+R_half_table(ic,iam)
Rr6=R * R * r2_r
Rr6=Rr6 * Rr6 * Rr6
Rr12=Rr6 * Rr6
coef=12.d0 * eps * r2_r * (Rr12-Rr6)
tlx=coef*rx
tly=coef*ry
tlz=coef*rz
Ulj12=     eps*Rr12
Ulj6 =-2d0*eps*Rr6
sUlj12=sUlj12+Ulj12
sUlj6 =sUlj6 +Ulj6
stlcx=stlcx+tlx
stlcy=stlcy+tly
stlcz=stlcz+tlz
rc =sqrt(r2)

rc_r=1.d0/rc
rc2_r=rc_r*rc_r
Cij=chgv_i0*chgv_table(ic,iam)
Cij=Cij*rc_r
tmp=Cij*rc2_r
tcx=tmp*rx
tcy=tmp*ry
tcz=tmp*rz
Ucoulomb=Cij
sUcoulomb=sUcoulomb+Ucoulomb
stlcx=stlcx+tcx
stlcy=stlcy+tcy
stlcz=stlcz+tcz
ic=ic+1

enddo !j0
w3_f(1,i0,0)=w3_f(1,i0,0)+stlcx
w3_f(2,i0,0)=w3_f(2,i0,0)+stlcy
w3_f(3,i0,0)=w3_f(3,i0,0)+stlcz

enddo !i0
!$omp end do

many calculations in SIMD loop
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FX100 ITO OFP KNCC (retired system)

Processor SPARC64 XIfx Xeon Gold 6154 Xeon Phi 7150 Xeon Phi P5110

Installed System Nagoya University
FX100

Kyushu University
ITO

JCAHPC
Oakforest-PACS

UTokyo
Experimental cluster

#processor/node 1 2
(use only 1 socket)

1 1

Frequency 2.2 GHz 3.0-3.7 GHz 1.4-1.6 GHz 1.05 GHz

#cores/socket 32 (+ 2 assistants) 18 (use only 16 cores) 68 (use only 64 cores) 60

HPL performance/1socket 1.0 TF 1.1 TF 1.6 TF 1.0 TF

Memory kind, 
amount/socket

HMC 32 GB DDR4 96 GB MCDRAM 16 GB GDDR 8 GB

STREAM Triad/socket 210 GB/s 95 GB/s 495 GB/s 140 GB/s

Interconnect Tofu2 IB-EDR OPA *

Compiler, MPI Fujitsu TCS Intel 18.0.0
(& OpenMPI, MVAPICH)

Intel 18.0.1 Intel 17.0.4

multi-core many-core



• We measured the execution time on target hardware and analyzed the trends, and 
compared them.

• Evaluation Environment: compiler, MPI, and compiler option:

– FX100: Fujitsu TCS, frtpx -Kfast,simd=2,openmp,parallel,ocl

– ITO: Intel 18.0.0, MVAPICH 2.2, ifort -O3 -qopenmp -align array64byte -xCORE-AVX512

– OFP: Intel 18.0.1, ifort -O3 -qopenmp -align array64byte -xMIC-AVX512

• Flat-mode & Quadrant-mode

– KNCC: Intel 17.0.4, ifort -O3 -mmic -qopenmp, native execution mode

• various combinations of #processes and #threads

– m Pn T : m process(es) per node, n thread(s) per process

• 1P32T : 1process per node, 32 threads per process (total 32 threads per node)

• 4P8T : 4processes per node, 8 threads per process (total 32 threads per node)

10

We tried -xCOMMON-AVX512 but
performance improvement is not 
obtained.



• Target data

– a cubic calculation unit cell with a side length of 58.62 ˚ A contains 6,510 water molecules

– assuming the liquid state

– To apply the FMM, the unit cell is decomposed into 8 3 smaller cells, named subcells, 
according to the octree cell partitioning with three levels.

– Number of atoms in each subcell is 40 on average.

– Fourth order expansions were adopted for multipole and local expansions, while its order does 
not affect the performance of the p2p part.

– can be executed by up to 512 processes

– Number of processes affects execution time and its dispersion among processes, because 
atoms do not exist equally in the space, and atoms in each process interact with atoms in 
neighboring processes.

– Therefore, we choose the longest elapsed time of all processes because the total execution 
time depends on the process that requires the longest execution time of all processes.
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FX100 KNCC

No.1
17.97 msec

■ original ■ code1 ■ code2 ■ code3 ■ code4

• code3 and code4 achieve good performance

No.1
1.99 msec

• code2 achieves good performance
• x8 execution time to FX100 (very slow)
• HT is not very effective

#Threads / process (= #Threads / node)
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same condition as previous work

• The fastest execution time (1.84 msec) is obtained by 2P16T with code3.
• small improvement from previous work

■ original ■ code1 ■ code2 ■ code3 ■ code4
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• code3 gives the fastest time for 1P16T, 2P8T, and 4P4T.
• The fastest time of all is 16P1T with original algorithm (2.00 msec).

■ original ■ code1 ■ code2 ■ code3 ■ code4



15

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1P64T 2P32T 4P16T 8P8T 16P4T 32P2T

E
la

p
se

d
 t

im
e

 [
m

se
c

]

0.0

5.0

10.0

15.0

1P128T 2P64T 4P32T 8P16T 16P8T 32P4T

E
la

p
se

d
 t

im
e

 [
m

se
c

]

0.0

5.0

10.0

15.0

20.0

1P192T 2P96T 4P48T 8P24T 16P12T 32P6T

E
la

p
se

d
 t

im
e

 [
m

se
c

]

0.0

5.0

10.0

15.0

20.0

1P256T 2P128T 4P64T 8P32T 16P16T 32P8T

E
la

p
se

d
 t

im
e

 [
m

se
c

]

■ original ■ code1 ■ code2 ■ code3 ■ code4

64 cores * 8 nodes

192 cores(HT) * 8 nodes

128 cores(HT) * 8 nodes

256 cores(HT) * 8 nodes
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16

(18.64 msec)

The fastest time is 1.31 msec, execution settings are 
256 cores, 32P8T, and code1.

■ original ■ code1 ■ code2 ■ code3 ■ code4
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• Performance trends of FX100 and ITO are alike.
• In the case with many number of processes, no large differences between methods.
• Using many processes doesn't improve performance.

• OFP has different trend from FX100 and ITO.
• Small number of process causes very bad performance.
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time case

FX100 1.84 msec 2P16T code3

ITO 2.00 msec 16P1T original

OFP 1.31 msec 32P8T code1

• OFP obtained the fastest performance, but the differences between other 
environment are smaller than benchmark scores.

• (Maybe) because MODYLAS is much more difficult than simple benchmarks.

HPL STREAM Triad MODYLAS (p2p)

FX100 vs OFP 1.0TF vs 1.6TF
+ 60%

210 GB/s vs 495 GB/s
+135%

1.84 msec vs 1.31 msec
-29%

ITO vs OFP 1.1TF vs 1.6TF
+ 45%

95 GB/s vs 495 GB/s
+420%

2.00 msec vs 1.31 msec
-35%

• Next, how about many nodes?



• Our previous work and evaluations above use only 8 nodes.

• How about more many nodes?

• limitation: target data can be executed by up to 512 processes

• We measured the execution time on 16 ,32, and 64 nodes, and compared them.
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■ original ■ code1 ■ code2 ■ code3 ■ code4

32 cores * 16 nodes

32 cores * 32 nodes 32 cores * 64 nodes

the fastest, 0.96 msec

the fastest, 0.52 msec the fastest, 0.31 msec

• 2P or 4P with code3 is fast
• the shortest time will be reduced more than 64 

nodes
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■ original ■ code1 ■ code2 ■ code3 ■ code4

16 cores * 16 nodes

16 cores * 32 nodes 16 cores * 64 nodes

• 1P or 2P with code3 is fast
• the fastest time will be reduced more than 64 

nodes
• the trends are similar to FX100

the fastest, 1.05 msec

the fastest, 0.57 msec the fastest, 0.32 msec
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64 cores * 16 nodes

192 cores (HT) * 16 nodes 256 cores (HT) * 16 nodes

128 cores (HT) * 16 nodes

■ original ■ code1 ■ code2 ■ code3 ■ code4

the fastest, 0.78 msec
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64 cores * 32 nodes

192 cores (HT) * 32 nodes 256 cores (HT) * 32 nodes

128 cores (HT) * 32 nodes

■ original ■ code1 ■ code2 ■ code3 ■ code4

the fastest, 0.50 msec
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64 cores * 64 nodes

192 cores (HT) * 64 nodes 256 cores (HT) * 64 nodes

128 cores (HT) * 64 nodes

■ original ■ code1 ■ code2 ■ code3 ■ code4

the fastest, 0.37 msec

combination of 2HT, many processes, and 
original algorithm obtained the best 
performance in the case of 16, 32, 64 nodes
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8 nodes 16 nodes 32 nodes 64 nodes

FX100 1.84 msec
2P16T, code3

0.96 msec
2P16T, code3

0.52 msec
4P8T, code3

0.31 msec
4P8T, code3

ITO 2.00 msec
16P1T, original

1.05 msec
1P16T, code3

0.57 msec
2P8T, code3

0.32 msec
2P8T, code3

OFP 1.31 msec
32P8T, code1

0.78 msec
32P4T, original

0.50 msec
16P8T, original

0.37 msec
8P16T, original
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• FX100 and ITO have similar times and trends, but OFP is different.

– FX100 & ITO: many processes/node don't improve performance, code3 is good

– OFP: many processes/node improves performance, original is good

• maybe because of the cost of thread management and synchronization of OpenMP

• OFP is the fastest of three target HWs at 8, 16, and 32 nodes, but the slowest at 64 nodes. 
Scalability is bad.

– concrete reason is not clear

• It is confirmed that #processes, #threads, #nodes, and p2p algorithms are the 
important performance parameters and execution conditions of MODYLAS.

– This result helps someone who want to use MODYLAS on other environment including post-K.

– Making the tuning easy is our another future work. ppOpen-AT will be useful to this work.

• http://ppopenhpc.cc.u-tokyo.ac.jp/ppopenhpc/
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• measurement targets include only p2p calculation, MPI communication is not included

– Generally, the more MPI processes are used, the more MPI communication time is needed.

– Especially on OFP…

• many #processes/node achieved fast p2p performance
<=> many total #processes causes performance slowdown

• Is using many #processes good or bad?

• We measured the two point-to-point communication parts of MODYLAS.

– p2p_comm: communicates the coordinates of the atoms in halo areas

– comm_bound: exchanges the ownership of the atoms by each processes
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Combinations of processes and threads

FX100
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Combinations of processes and threads

ITO

■ p2p_comm ■ comm_bound
• both FX100 and ITO:

• (there are some exceptions,)
• the more nodes are used, the shorter communication time
• the more processes/node are used, the longer communication time

• FX100: 8 nodes and 16 nodes requires very long comm_bound time.
• maybe because of performance trend of Tofu? (Tofu is optimized for 12*n nodes)

• ITO: achieved faster time than FX100 and OFP at all #nodes
• Many nodes and processes reduce the amount of communication, but times of communication are not 

very difference. Latency will limit reducing the time of communication.
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Combinations of processes and threads

OFP

■ p2p_comm ■ comm_bound

• OFP needs longer communication times than FX100 and ITO (around 0.4 - 0.6 msec at 64 nodes). 
Especially, 64 nodes requires very long comm_bound.

• OFP achieved fast p2p calculation time, total time of calculation and communication is very longer than 
FX100 and ITO.

• Honestly, the reason why OFP needs long communication time is not clear. Additional investigation is 
required.

• Moreover, in the case of 8 nodes, the more processes are used, the less p2p_comm time is required. 
Similarly, in the case of 64 nodes, the more processes are used, the less comm_bound time is required. 
Reducing the number of threads improve the communication time well?



• evaluated the execution times of the p2p part of MODYLAS (one of the dominant part for 
every input data case) on 8 nodes

– in addition to the our previous work, combinations of #processes and #threads are expanded 
and new target hardware are added: ITO (Skylake-SP) and OFP (Knights Landing)

– FX100 and ITO achieved similar performance and its trends, FX100 is a little bit faster than ITO.

– OFP achieved the higher performance. When the number of processes is small, performance is 
very low. (Probably, many number of threads causes slowdown.)

• moreover, measured performance on 16, 32, and 64 nodes (strong scaling)

– FX100 and ITO achieved similar performance and its trends

– OFP achieved bad scalability: the fastest on 8, 16, and 32nodes, the slowest on 64 nodes

• considered the communication time

– ITO achieved the fastest and OFP achieved the slowest communication time

– FX100 is slower than ITO a little, optimization of Tofu (12*n nodes) should be considered

30



• using other input data (large water molecule other kind of molecules)

– dominant parts are same as this work, performance trends may be changed

• large number of nodes (with large molecules), other computer systems

– more than 100 nodes

– Cascade Lake, post-K (Supercomputer Fugaku)

• optimizing other parts or whole MODYLAS application

– Can we achieve high performance both p2p and communication?
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