
An Accurate Tool for Modeling,
Fingerprinting, Comparison, and

Clustering of Parallel Applications
Based on Performance Counters

V. Ramos, C. Valderrama, P. Manneback, and S. Xavier-de-Souza

1

● Hardware Performance Counters (HPC) are special registers available on most
modern processors

● HPCs are capable of counting hundreds of micro-architectural events such as
instructions executed, cache-hit, branches miss-predicted, energy estimation
and much more.

● Exploiting this HPCs requires an intimate knowledge of the micro-architecture
and kernel API, as well as an awareness of an ever increasing complexity.

● Still lacking of high-level APIs.

CONTEXT

2

RELATED WORK

● PAPI developed in C
● A few non-official PAPI libraries ported to Python.

○ Python version has a considerable overhead
○ Does not show an easy way to

■ create raw events or
■ control low-level events

● Intel VTUNE, Perfctr and Perfmon2
○ Need special drivers

● Linux came up with a performance counters subsystem
○ a complete set of configurations for hardware and software events

3

READING PERFORMANCE COUNTERS

● The configuration of the counters is done via Model-Specific Registers (MSR)
● Operating systems provide an abstraction of these hardware capabilities to

access counters and MSRs.
● On Linux accessible via special file descriptors opened via the perf_event_open()

system call.
● Counters can be read with different forms:

○ Polling (when an event happen)
○ Interruption
○ Time

4

PYTHON TOOL TO COLLECT HARDWARE
PERFORMANCE COUNTERS

● Developed with Python and C++
● Profiler

○ Python API for accessing, configuring
and analyze performance counters

● Events
○ high level api for finding available

events in the system
● Workload

○ execute and sample the counters
● libpfm4

○ helper library to find and create
performance events

● Analyzer
○ responsible for the post-processing,

filtering and interpolation
5

READING PERFORMANCE COUNTERS

Installation on ubuntu:

sudo apt install python-dev swig libpfm4-dev
pip install performance-features

Creating 3 event groups and sampling over time:

1. from profiler import *
2. try:
3. events= [['PERF_COUNT_HW_INSTRUCTIONS'],
4. ['PERF_COUNT_HW_BRANCH_INSTRUCTIONS','PERF_COUNT_HW_BRANCH_MISSES'],
5. ['PERF_COUNT_SW_PAGE_FAULTS']]
6. perf= Profiler(program_args= ['/bin/ls','/'], events_groups=events)
7. data= perf.run(sample_period= 0.01)
8. print(data)
9. except RuntimeError as e:

10. print(e.args[0])
6

ACCURACY COMPARISON

Average*106 Standard Deviation

Counters
Pined
values Linux API PAPI

PAPI
Python Our tool Linux API PAPI

PAPI
Python Our tool

INSTRUCTIONS_RETIRED 226.99 227 227 225.9 227 396 133 337763 175

BRANCH_INSTRUCTIONS_RETIRED 9.24 9.25 9.25 9.24 9.25 297 208 8485 91
BR_INST_RETIRED:CONDITIONAL 8.22 8.22 8.22 8.21 8.22 0 0 3383 0
MEM_UOP_RETIRED:ANY_LOADS 2484.18 2484.16 37399 38953

MEM_UOP_RETIRED:ANY_STORES 189.96 189.96 1513 687

UOPS_RETIRED:ANY 12291.08 12290.9 345246 333298

PARTIAL_RAT_STALLS:MUL_SINGLE_UOP 0.6 0.6 1222 521
ARITH:FPU_DIV 5.8 5.8 1760 1544

FP_COMP_OPS_EXE:X87 48.79 48.79 1283 3311

INST_RETIRED:X87 17.2 17.2 4 3

FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE 5.4 5.4 1547 2097

7

● Ideal hardware performance counters
provide exact deterministic results...

● Some HPCs are non-deterministic even in
controlled environments, others present
overcounting and some are just wrong

● Need for post-processing

POST-PROCESSING

Normalized time
In

st
ru

ct
io

ns

8

POST-PROCESSING

1
HPC gatherin

g

Colle
ct

HPC on m
ultip

le ru
ns

2
Single cu

rve

Remove
 outlie

rs
usin

g m
edian filte

r a
nd

ca
lcu

late th
e m

ean cu
rve

3
Smooth th

e cu
rve

Interpolate th
e cu

rve
 and filte

r to
 get a

sm
oother c

urve

9

● Removing outliers improve the
classification

● Smothering focus the classification on the
shape of the curve

● Interpolation and execution time
normalization makes the curve have the
same number of points

Why Post-processing for clustering ?

Normalized time
In

st
ru

ct
io

ns
10

CLUSTERING

● 30 applications of the Polybench with 3 different inputs
● Metric input size defined as the ratio of instructions by memory instructions

● Using the canberra distance to measure distance between curves

● Clustering method:
○ Linkage method of Ward

11

CLUSTERING
Cluster 1

Normalized time
12

CLUSTERING
Cluster 2

Normalized time
13

CLUSTERING
Cluster 3

Normalized time
14

CLUSTERING

● Curves that have similar shape have also been classified as the same clusters
○ Regardless of scale on vertical and horizontal axis

● 24 applications with different inputs were classified in the same cluster

Cluster 1 Cluster 2 Cluster 3

15

CLUSTERING

● Dendrogram shows how close applications are from each other

16

CLUSTERING

Clusters

● 2mm, 3mm, cholesky, correlation,
covariance, floyd-warshall, gemm,
gramschmidt, lu, ludcmp,
nussinov, symm

● deriche, doitgen, syrk
● adi, fdtd-2d, jacobi-2d, syr2k
● atax, bicg, durbin, gemver,

gesummv, mvt, trisolv, trmm
● heat-3d, seidel-2d

17

CONCLUSIONS

● Our tool exposes linux API to Python
● Overhead similar or lower the established APIs
● High abstraction and simplified configuration
● Fingerprint programs and compute similarities between programs given a metric
● Clustering reduces application space

18

FUTURE WORK

● Create a data set of applications behavior for automatic classification of
programs.

● The idea is to have a set of clusters that can describe most applications in this
way we can know specific behaviors of the applications.

● Can be applied to various areas where application classification is needed, for
example
○ Benchmark creation,
○ Dynamic Frequency and Voltage Scaling

19

