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● Hardware Performance Counters (HPC) are special registers available on most 
modern processors

● HPCs are capable of counting hundreds of micro-architectural events such as 
instructions executed, cache-hit, branches miss-predicted, energy estimation 
and much more.

● Exploiting this HPCs requires an intimate knowledge of the micro-architecture 
and kernel API, as well as an awareness of an ever increasing complexity.

● Still lacking of high-level APIs.

CONTEXT
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RELATED WORK

● PAPI developed in C
● A few non-official PAPI libraries ported to Python.

○ Python version has a considerable overhead
○ Does not show an easy way to 

■ create raw events or 
■ control low-level events

● Intel VTUNE, Perfctr and Perfmon2
○ Need special drivers

● Linux came up with a performance counters subsystem
○ a complete set of configurations for hardware and software events
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READING PERFORMANCE COUNTERS

● The configuration of the counters is done via Model-Specific Registers (MSR)
● Operating systems provide an abstraction of these hardware capabilities to 

access counters and MSRs.
● On Linux accessible via special file descriptors opened via the perf_event_open() 

system call.
● Counters can be read with different forms:

○ Polling ( when an event happen )
○ Interruption
○ Time
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PYTHON TOOL TO COLLECT HARDWARE 
PERFORMANCE COUNTERS

● Developed with Python and C++
● Profiler 

○ Python API for accessing, configuring 
and analyze performance counters

● Events 
○ high level api for finding available 

events in the system
● Workload 

○ execute and sample the counters
● libpfm4

○ helper library to find and create 
performance events

● Analyzer
○ responsible for the post-processing, 

filtering and interpolation
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READING PERFORMANCE COUNTERS

Installation on ubuntu:

sudo apt install python-dev swig libpfm4-dev
pip install performance-features

Creating 3 event groups and sampling over time:

1. from profiler import *
2. try:
3.     events= [['PERF_COUNT_HW_INSTRUCTIONS'],
4.             ['PERF_COUNT_HW_BRANCH_INSTRUCTIONS','PERF_COUNT_HW_BRANCH_MISSES'],
5.             ['PERF_COUNT_SW_PAGE_FAULTS']]
6.     perf= Profiler(program_args= ['/bin/ls','/'], events_groups=events)
7.     data= perf.run(sample_period= 0.01)
8.     print(data)
9. except RuntimeError as e:

10.     print(e.args[0])
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ACCURACY COMPARISON

Average*106 Standard Deviation

Counters
Pined 
values Linux API PAPI

PAPI 
Python Our tool Linux API PAPI

PAPI 
Python Our tool

INSTRUCTIONS_RETIRED 226.99 227 227 225.9 227 396 133 337763 175

BRANCH_INSTRUCTIONS_RETIRED 9.24 9.25 9.25 9.24 9.25 297 208 8485 91
BR_INST_RETIRED:CONDITIONAL 8.22 8.22 8.22 8.21 8.22 0 0 3383 0
MEM_UOP_RETIRED:ANY_LOADS 2484.18 2484.16 37399 38953

MEM_UOP_RETIRED:ANY_STORES 189.96 189.96 1513 687

UOPS_RETIRED:ANY 12291.08 12290.9 345246 333298

PARTIAL_RAT_STALLS:MUL_SINGLE_UOP 0.6 0.6 1222 521
ARITH:FPU_DIV 5.8 5.8 1760 1544

FP_COMP_OPS_EXE:X87 48.79 48.79 1283 3311

INST_RETIRED:X87 17.2 17.2 4 3

FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE 5.4 5.4 1547 2097
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● Ideal hardware performance counters 
provide exact deterministic results...

● Some HPCs are non-deterministic even in 
controlled environments, others present 
overcounting and some are just wrong

● Need for post-processing

POST-PROCESSING
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POST-PROCESSING
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● Removing outliers improve the 
classification

● Smothering focus the classification on the 
shape of the curve

● Interpolation and execution time 
normalization makes the curve have the 
same number of points

Why Post-processing for clustering ?
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CLUSTERING

● 30 applications of the Polybench with 3 different inputs
● Metric input size defined as the ratio of instructions by memory instructions

● Using the canberra distance to measure distance between curves

● Clustering method: 
○ Linkage method of Ward
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CLUSTERING
Cluster 1

Normalized time
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CLUSTERING
Cluster 2

Normalized time
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CLUSTERING
Cluster 3

Normalized time
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CLUSTERING

● Curves that have similar shape have also been classified as the same clusters
○ Regardless of scale on vertical and horizontal axis

● 24 applications with different inputs were classified in the same cluster

Cluster 1 Cluster 2 Cluster 3
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CLUSTERING

● Dendrogram shows how close applications are from each other
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CLUSTERING

Clusters

● 2mm, 3mm, cholesky, correlation, 
covariance, floyd-warshall, gemm, 
gramschmidt, lu, ludcmp, 
nussinov, symm

● deriche, doitgen, syrk
●  adi, fdtd-2d, jacobi-2d, syr2k
● atax, bicg, durbin, gemver, 

gesummv, mvt, trisolv, trmm
● heat-3d, seidel-2d
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CONCLUSIONS

● Our tool exposes linux API to Python
● Overhead similar or lower the established APIs
● High abstraction and simplified configuration
● Fingerprint programs and compute similarities between programs given a metric
● Clustering reduces application space
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FUTURE WORK

● Create a data set of applications behavior for automatic classification of 
programs.

● The idea is to have a set of clusters that can describe most applications in this 
way we can know specific behaviors of the applications. 

● Can be applied to various areas where application classification is needed, for 
example
○ Benchmark creation, 
○ Dynamic Frequency and Voltage Scaling
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