Using Small-Scale History Data to Predict Large-Scale Performance of HPC Application

Wenju Zhou
University of Science and Technology
of China

2020.05.12

Outline

- Background
- Two-level model
- Experiment results and analysis
- Conclusions

Background

High Performance Computing (HPC)

- architecture:
 computing nodes,
 interconnect, ...
- usage:

 physical simulations,
 molecular modeling, ...
- effect:
 provide computing power,
 reduce experimental risk, ...

fig 1. architecture of HPC

Performance Modeling

fig 2. architecture of HPC

Performance Modeling

categories	desciption advantaes		limitations
simulative methods	simulating execution by simulators	concept machine	overhead
analytical methods	analysis of code and system by experts	accuracy & Interpretability	overhead
empirical methods	statistical analysis of historical data	automation	cold start

- system complexity
- application complexity
- interaction between system and application

attention on empirical methods

Machine Learning in Performance Modeling

Machine Learning

A technology to learn knowledge and experience from historical data.

A powerful approach for empirical modeling methods.

□ D. N. Hieu, T. T. Minh, T. Van Quang, B. X. Giang, and T. Van Hoai, "A machine learning-based approach for predicting the execution time of cfd applications on cloud computing environment," in International Conference on Future Data and Security Engineering, pp. 40–52, Springer, 2016

□ P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Kumaran, "Benchmarking machine learning methods for performance modeling of scientific applications," in 2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), pp. 33–44, IEEE, 2018.

Extrapolation Issue of Machine Learning

- Extrapolation: testset feature subspace outside trainset feature subspace.
- high-accuracy interpolations but low-accuracy extrapolations —— machine learning can achieve high-accuracy predictions in trainset subspace, but prediction accuracy reduces drastically outside

- Issue

trainset subspace.

Two-level Model

Problem Description

Features

input parameters, Identically and Independent Distributed in X_{train} and X_{test} .

number of processors, $p \in [a,b] \text{ in } X_{train},$ $p \in [c,d] \text{ in } X_{test},$ b < c.

Label

execution time, y_{train} is known from historical logs, y_{test} is to be predicted.

Machine Learning Mechanism

$$f^* = \operatorname*{arg\,min}_{f} L(y_{test}, f(X_{test}))$$

Independent and Identically Distributed (IID) hypothesis

Approximate model: $f^* \approx \underset{f}{\operatorname{arg \, min}} L(y_{train}, f(X_{train}))$

Motivation of Two-Level Model

Issues of one-level model	Overview of two-level model
 Simple algorithms: own extrapolation ability in some way cannot learn complex relations between input parameters and performance 	- Interpolation level: learn accurate interpolation model and predict small-scale performance under input parameters in $X_{\textit{test}}$
 Sophisticated algorithms: learn accurate relations between input parameters and performance overfitting on small-scale data 	- Extrapolation level: construct model owning extrapolation ability and predict \mathcal{Y}_{test} with corresponding small-scale performance predictions

Workflow of Two-Level Model

fig 3. workflow of two-level model

Prediction Specification

Analysis of Interpolation Level

- Task: small-scale performance predictions as extrapolation level training data
- Requirement:
- high accuracy
- random error distribution

fig 4. influence of error distribution

Interpoaltion Level Model

Analysis of Extrapolation Level

- Task:
- predict large-scale performance with small-scale predictions
- Chanllenge:
- extrapolation (scalability) —— scalability may change with input parameters
- interpolation error —— only several data points for every input parameter combinations, easy to overfit causes error amplification

Extrapolation Level Model

Scalability

Performance Modeling Normal Form(PMNF):

$$f(p) = \sum_{k=1}^{n} c_k \cdot p^{i_k} \cdot \log_2^{j_k}(p)$$

Interpolation Error

Multi-Task Lasso:

Experiment Results & Analysis

Experiment

Platform Node				
Specification configuration				
CPU type	E5-2680 v4			
CPU frequency	2.4GHz			
#core	28			
memory	128GB			
network	100Gbps OPA			

Monte Carlo Benchmark (MCB) Features				
Name	Type	Values		
nZonesX	integr	[100, 1000]		
nZonesY	integer	[100, 1000]		
xDim	float	[1.0, 10.0]		
yDim	float	[1.0, 10.0]		
xSource	float	[1.0, 10.0]		
ysource	float	[1.0, 10.0]		
numParticles	integer	$[1 \times 10^7, 2 \times 10^7]$		
#process	integer	[16, 32, 48,, 512]		

Kripke Features				
Name	Type	Values		
layout	enumeration	DGZ, DZG, GDZ, GZD, ZDG, ZGD		
gset	integer	1, 2, 4, 8, 16, 32, 64, 128		
dset	integer	8, 16, 32		
pmethod	enumeration	sweep, bj		
#process	integer	1, 2, 4, 8, 16, 32, 64, 128		

Evaluation

Baseline

- Random Forest
- Multi-Layer Perceptron
- EPMNF

$$f(P) = \sum_{i=1}^{|P|} \sum_{k=1}^{n} c_i \cdot p_i^{j_{ik}} \log_2^{l_{ik}}(p_i)$$

Log Rgression

$$log(T) = \beta_1 log(x_1) + \beta_2 log(x_2) + \dots$$
$$\beta_n log(x_n) + \beta_p log(p) + error$$

Metrics

- MAE

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$

- MAPE

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{\hat{y}_i - y_i}{y_i} \right|$$

- RMSE

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$$

Result: Comparison of Different Methods

App Method		MAPE		MAE		RMSE	
App	Method	inter	extra	inter	extra	inter	extra
	RF	0.1481	1.4097	14.62	42.12	21.55	48.20
	MLP	0.1729	0.5323	17.06	20.64	25.15	27.88
MCB	EPMNF	0.2560	1.2191	21.21	33.95	27.73	41.57
	LR	0.1677	0.3640	18.99	9.87	31.28	12.42
	RFMTL	0.1481	0.2577	14.62	8.37	21.55	11.45
	RF	0.0610	0.8676	5.63	16.11	23.55	31.63
	MLP	0.3320	0.4758	27.24	12.71	52.91	26.98
Kripke	EPMNF	0.7324	3.4028	29.77	24.79	55.87	34.07
	LR	0.3088	0.6729	25.58	17.85	55.81	41.07
	RFMTL	0.0610	0.2524	5.63	7.74	23.55	20.58

- extrapolations are harder than interpolations
- the performance of the same method in diffrent applications varies greatly
- two-level model perform better than one-level model

Result: Comparison of Different Methods

fig 6. case study of different methods

Result: Single-Task v.s. Multi-Task

App	Method	MAPE	MAE	RMSE
MCB	ST	0.6789	28.06	61.35
	MT	0.2659	9.77	14.25
Kripke	ST	0.6662	17.67	41.47
	MT	0.2880	8.12	18.22

Multi-Task Learning

- data amplification
- feature selection

fig 7. residuals of random forest

Result: Single-Task v.s. Multi-Task

fig 8. case study of multi-task learning

Result: Clustering or Not

K-means Cluster

- distance:

$$Dist(X_i, X_j) = \sqrt{\sum_{k=1}^{n} W'_k (X_{ik} - X_{jk})^2}$$

- effect:

partition tasks into cluster by distance (relatedness) to learn high-related tasks jointly.

App	Method	MAPE	MAE	RMSE
МСВ	NCL	0.2659	9.77	14.25
	CL	0.2577	8.37	11.45
Kripke	NCL	0.2880	8.12	18.22
	CL	0.2524	7.74	20.58

reasons for insignificance

- input sensitivity
- · experimental feature values range
- · clustering algorithm

Result: Clustering or Not

fig 9. case study of clustering

14 Conclusions

Conclusions

- analyze the extrapolation problem and issues of onelevel model
- propose a two-level model to predict large-scale performance with only small-scale historical data
- conduct experiment to validate the effectiveness of two-level model

Future Work

- improve two-level model by choosing more fitting clustering and multi-task learing algorithms
- improve scalability models with considering system information to model cross-platform performance
- research whether two-level model works for extrapoaltion problem caused by input parameter

Thanks.
Welcome further communication.

Wenju Zhou

zhouwenj@mail.ustc.edu.cn