
IWAPT2020

Task Priority Control for the HPX 
Runtime System

Suhang Jiang1, Mulya Agung2, Ryusuke Egawa3,2, Hiroyuki Takizawa2

jiang.suhang@fujitsu.com, agung@tohoku.ac.jp, egawa@tohoku.ac.jp, takizawa@tohoku.ac.jp
1. Graduate school of Information Sciences, Tohoku University
2. Cyberscience Center, Tohoku University
3. Graduate School of Engineering, Tokyo Denki University
Suhang Jiang is presently with Fujitsu Corporation.

http://fujitsu.com
http://tohoku.ac.jp
http://tohoku.ac.jp
http://tohoku.ac.jp


IWAPT2020

Background
o HPX - High Performance ParalleX
o Task dependency

Motivation and Contributions
Proposed Approach
o Decoupled thread pools
o Thread mapping for multiple thread pools

Evaluations
o Evaluation setup
o Decoupled thread pools evaluation
o Thread mapping evaluation

Conclusions & Future work

Outline



n Synchronization is expensive!

IWAPT2020

Abalenkovs et al.@2015

The impact of synchronization will increase drastically on large-scale systems.

Background

Some examples of synchronization.



HPX – High Performance ParalleX [1]
n Runtime system and C++ classes for large-scale 

task-based execution 
• C++11 standard classes for multi-threading, such as 

future and promise, are used for task-based execution 
on a distributed-memory parallel computing system
o Threads of an application can be executed on different NUMA 

domains. 
o Tasks and their dependencies can be

represented as a directed acyclic graph
(DAG). 

o Tasks can be executed asynchronously by using 
hpx::async.

IWAPT2020

The DAG of right view of Blocked Cholesky Factorization

[1] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, 
“HPX: A task-based programming model in a global address space,” 
in 2015 IEEE International Conference on Cluster Computing, 2015, 
pp. 682–689.



This Work
n A lightweight task priority control mechanism for the HPX 

runtime system
• A higher priority is given to execution of some critical tasks

o Decoupled thread pools
• A method of mapping threads to cores is also discussed

o The built-in thread mapping methods of HPX are not applicable for the 
decoupled thread pools

IWAPT2020

n OpenMP version 4.5 or later supports task priorities to 
improve performance [2]. 

n Task priority control in HPX is not perfect.
• Execution of critical tasks can be delayed by executing non-critical tasks.
à Prioritizing critical tasks will improve performance. 

Motivation

[2] Sinnen, Oliver, Jsun Pe, and Alexei Vladimirovich Kozlov. "Support for fine grained dependent tasks in OpenMP." International 
Workshop on OpenMP. Springer, Berlin, Heidelberg, 2007.



IWAPT2020

1. Task priority controls in HPX by using decoupled thread pools
2. A thread mapping method for decoupled thread pools
3. The impacts of decoupled thread pools and thread mapping 

mechanisms on the performance of task-based execution
• The sources of performance improvements are also clarified

Contributions



IWAPT2020

The potrf task on the critical path can be 
executed right after the preceding syrk
task. However, other tasks might be 
executed earlier. 
So tasks on the critical path are not 
necessarily executed earlier.

Task Dependency
o Take the right DAG of Blocked 

Cholesky Factorization as an example:



IWAPT2020

§ Staged: The task has been 
created, but cannot start 
execution yet, because its 
dependency is not satisfied. 

§ Pending: The task is ready to run, 
but still needs to wait in the task 
queue until a worker thread 
becomes available. 

o In the HPX runtime system, a task is created when a future class 
object is instantiated, and then assigned to one of the worker threads 
in a round-robin fashion.

o The states of each task: 

HPX Thread Management

Task execution with the default mechanism of HPX



IWAPT2020

Worker threads are grouped into two 
different thread pools: 
o Worker threads in one thread pool are used 

only for critical tasks, while worker threads in 
the other thread pool are for non-critical 
tasks.

o The execution of critical tasks is never blocked 
by the execution of non-critical tasks. 

Suppose programmers are responsible for finding critical tasks.
• Only the critical tasks are assigned to a dedicated thread pool instead of the default 

thread pool, while the other non-critical tasks are assigned to the default thread 
pool.

Proposed Thread Management

Task execution with the proposed mechanism

Differences: 

Before: 

After: 



Implementation on HPX
The critical tasks are assigned to the critical pool using hpx::executors

IWAPT2020

The code snippets of the default and the decoupled thread pool mechanisms

Use the default executor Set the executor to use the critical pool



n How to map critical threads to NUMA domains?

IWAPT2020

• Default : critical tasks are placed closer.

Domain 0 Domain 1

Domain 0 Domain 1

Distribute the threads from multiple thread pools among the NUMA domains

o Since worker threads in each of the two thread pools can be mapped to 
processor cores in various ways, thread mapping can improve performance.

o We propose a thread mapping method, called NUMA-balanced-mtp, to reduce 
the load imbalance among the NUMA domains.

Thread Mapping

Thread mapping in two NUMA domains

• NUMA-balanced-mtp: loads of critical tasks are balanced.



Domain-0

Critical thread pool Default thread pool

Worker threads

NUMA-balanced-mtp Algorithm

IWAPT2020

X1

C1 C2 C3 C4

X1 X3X2 X4 D1 D3D2 D4

NUMA-balanced-mtp

X3 D1 D3

Domain-1

X2

C1 C2 C3 C4

X4 D2 D4

The result of thread mapping on two NUMA domains



IWAPT2020

o Evaluate the performance gain by the proposed mechanism using two benchmarks on two 
different systems. 

Evaluation Setup

The configurations of the Intel Xeon Phi KNL(KNL4) and Oakbridge-CX(OCX) systems.

Data format Parallelization

Cholesky factorization matrix-based tasks with loops

Merge sort array-based Recursive tasks

o Two different benchmarks: 

o Compare the execution times of the proposed mechanism to those of the default 
mechanism of HPX
• Evaluate different configurations of the number of threads in each thread pool 
• Evaluate the impacts of the proposed thread mapping mechanism on the 

performance
o Investigate the sources of performance improvements by measuring the waiting time of 

tasks in the staged and pending queues 



Critical Tasks of the Benchmarks

IWAPT2020

The DAG of the Cholesky
factorization benchmark. The potrf
task is detected as the critical task

The DAG of the merge sort 
benchmark. The merge task is 

detected as the critical task



IWAPT2020

Performance Results on the KNL4

Performance results of the Cholesky benchmark on the KNL4 
(288 threads, 512x512 matrix size)

o The execution time is reduced by 31.8% at the thread pool configuration of (256, 32) 
with the default thread mapping method. 

o For the same problem, using the NUMA-balanced-mtp thread mapping can further 
increase the performance by 4.8%. 



IWAPT2020

Performance Results on the OCX

Performance results of the Cholesky benchmark on the OCX 
(56 threads, 2048x2048 matrix size)

o The proposed implementation can increase the performance by 33.5% in terms of 
execution time. 

o The mapping method decreases the performance because the communication cost 
among NUMA domains on OCX is larger and thus cancels the performance gain by 
reducing the load imbalance.



IWAPT2020

Performance Results of Merge Sort

Performance results of the merge sort benchmark on the KNL4 (288 threads, 105 array size)

o All the configurations of the proposed decoupled thread pools mechanism can 
achieve a higher performance than the default mechanism. 

o The best configuration is shown by the (256, 32) configuration, which decrease the 
execution time by 47% compared with the default mechanism.



IWAPT2020

• The configuration with 256 threads in critical thread pool can achieve not 
only the shortest pending time but also the shortest staged time. 

• This explains why this configuration can achieve the shortest execution 
time.

Sources of Performance Improvements

The waiting times of tasks in the staged and pending queues. The results 
are obtained using the HPX counters on the KNL4



0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Cholesky Merge sort

Ra
tio

Ratio of number of
executed threads

Ratio of thread times

IWAPT2020

• The workloads of the critical tasks are analyzed from the ratio of the number of 
executed threads and thread times of the critical pool and default pool

• In the Cholesky benchmark, the execution times of critical tasks are much longer 
than those of the non-critical tasks.

• In merge sort, the number of executed critical tasks is almost equal to that of the 
non-critical tasks.

Workloads of Critical Tasks of the Benchmarks

The impacts of the decoupled thread pools mechanism depend on the 
application workload



IWAPT2020

This work has proposed a task priority control mechanism that uses decoupled thread 
pools in order to prioritize the execution of critical tasks.
ü By using a pool of worker threads dedicated to critical tasks, the proposed 

mechanism can prevent critical tasks from waiting for non-critical tasks.
ü As a result, the proposed mechanism can significantly reduce the waiting time of 

critical tasks, and hence the total execution time. 
ü In addition, the effects of using different thread mapping methods are also 

investigated empirically. 

o The parameters of the numbers of pools and threads in each pool are 
empirically adjusted by hand in advance. 

§ Since the performance is sensitive to the parameter values, auto-tuning of 
the parameters will be an interesting research topic. 

Conclusions

Future Work



IWAPT2020

Acknowledgments
The authors would like to thank Prof. Hiroaki Kobayashi of Tohoku University and Dr. Kentaro Sano of 
RIKEN R-CCS. This work is partially supported by MEXT Next Generation High-Performance Computing 
Infrastructures and Applications R&D Program “R&D of A Quantum-Annealing-Assisted Next Generation 
HPC Infrastructure and its Applications,” Grant-in-Aid for Scientific Research(B) #16H02822 and 
#17H01706, and Initiative on Promotion of Supercomputing for Young or Women Researchers, 
Information Technology Center, The University of Tokyo.

Thank you!


