

Improving Collective I/O Performance with Machine Learning Supported Auto-tuning

Ayse Bagbaba
High Performance Computing Center Stuttgart

hpcabagb@hlrs.de

Outline

- The Problem and Setup
 - Motivation & Objectives
 - Experiments
 - Performance Factors
 - Modeling
- Methodology
 - I/O Auto-tuning
 - Performance Models
- Evaluation
 - Evaluation 1: Influence of Auto-tuning
 - Evaluation 2: Validation of Performance Model
- Conclusion and Future Work

Problem Statement

- Collective I/O is one of the most important I/O access optimizations
- Various layers offer tunable parameters for improving collective I/ O performance
- Finding good configurations of an I/O application is often challenging
 - complex interdependencies between the multiple layers
 - diversity among applications and HPC platforms
 - the size of configuration space
 - the lack of time or experience

Need for an automatically tuning solution for collective I/O operations

- compatible with as many engineering applications as possible,
- usable for engineers and scientists with little knowledge of parallel I/O,
- portable across multiple HPC platforms

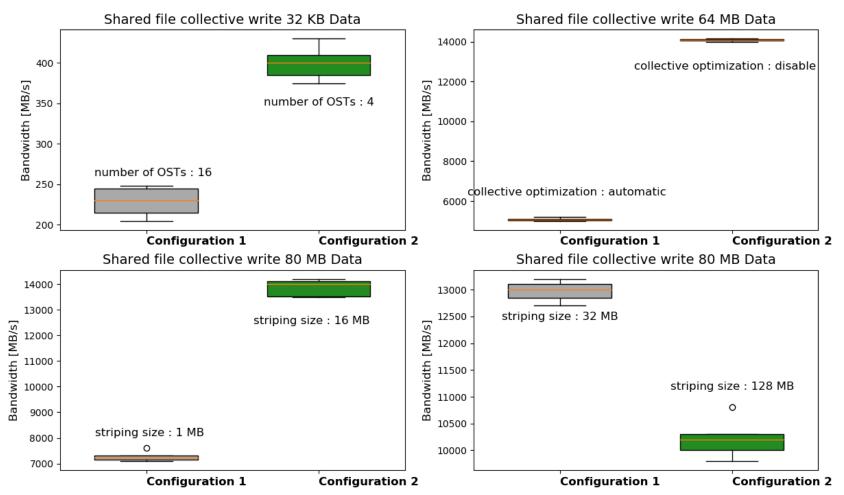
- •follow the current MPI standard,
- run transparently to the users,
- •produce acceptable little overhead,
- •improve I/O performance automatically

System Specifications

- All evaluations were made on Hazel Hen (Cray XC40) with an InfiniBand connected Lustre file system
 - with a peak performance of 7.42 PFLOPS, Hazel Hen is one of the most powerful HPC systems in the world

Architecture	Hardware	File System	Storage	Bandwidth
Cray XC40	Intel Xeon E5-2680 v3 Cray Aries Network 7712 Compute nodes 90 Service nodes	Lustre 7 MDTs 54 OSTs	Cray Sonexion 2000	3.75 GB/s per OST
	30 Service Hodes			

Impact of Wrong Parameters - an example

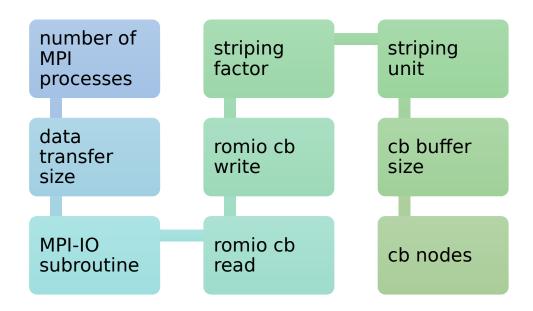


striping over 4 OSTs was about 71% better than the performance of striping over 16 OSTs

- disabling the collective buffering for collective I/O achieved about 269% improvement for writing performance, for non-small data transfer size

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning

Performance Factors



- How to set the values of these configuration parameters?
- How to create a performance predictor based on them?

Modeling

 The I/O performance model can be formally defined as follows:

$$\phi = f(\alpha, \zeta, \omega),$$

- The modeling approach represents the similar cases that can be represented by using a single model
- Machine learning may provide an appropriate method

Methodology

Use IOR with simple I/O patterns to evaluate the impact of the filesystem and Characterize collective I/ O performance application characteristics Use self-implemented Transfer results to synthetic and real HPC applications which have more complex I/O benchmarks and patterns applications Find out the best Find the best parameters for MPI-IO layer to allow more efficient usage of I/O configuration resources Support with machine Evaluate algorithms e.g, machine learning techniques to automate the search best learning parameter set Validate with real Validate approach with real applications from project partners applications

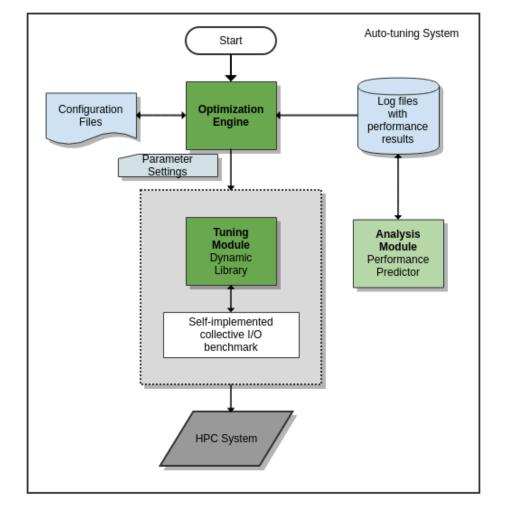
I/O Auto-tuning

- I/O auto-tuning framework for MPI-IO library
 - tune I/O configuration parameters between layers transparently
 - use predictive models
 - characterize collective I/O
 - assist engineers/administrators in finding the better configuration,
 - use the knowledge of prior runs to choose the next promising configuration
- Knowledge bridge between application users and system administrators

I/O Auto-tuning - Approach

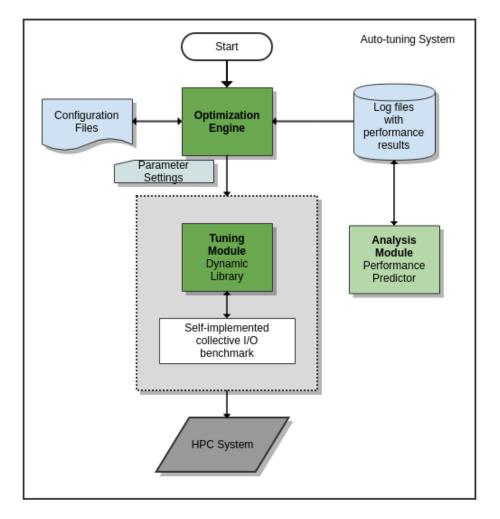
Optimization approach consists of three basic steps:

- identifying configurations' searching scope,
- choosing the best configuration parameters,
- suggesting or tuning.



I/O Auto-tuning - Modules

- Monitoring Module
 - surrounds MPI-IO layer
- Tuning Module
- Optimization Engine Module
- Analysis Module
- These modules support each other as a team

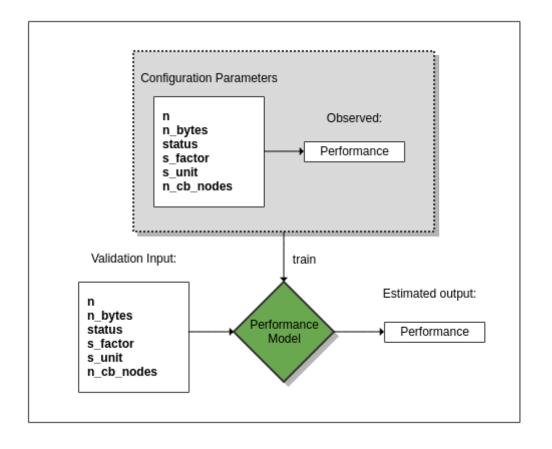


Performance Models

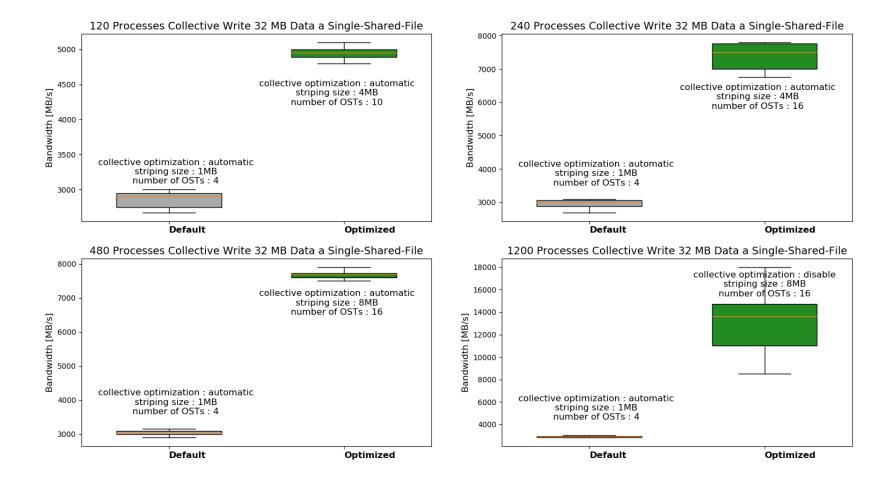
- Provides a performance estimate
 - create a performance predictor model to be expected from a given set of fixed and variable parameters
 - this performance model is trained on a number of samples
 - performance is estimated on the validation set

Name	Value
n	24-1200
n_bytes	256 B - 196 MB
n_cb_nodes	1 - 16
s_factor	1 - 16
s_unit	1 MB - 32MB
status	automatic; disable; enable
IO pattern	collective

Training Set Configurations' Scope

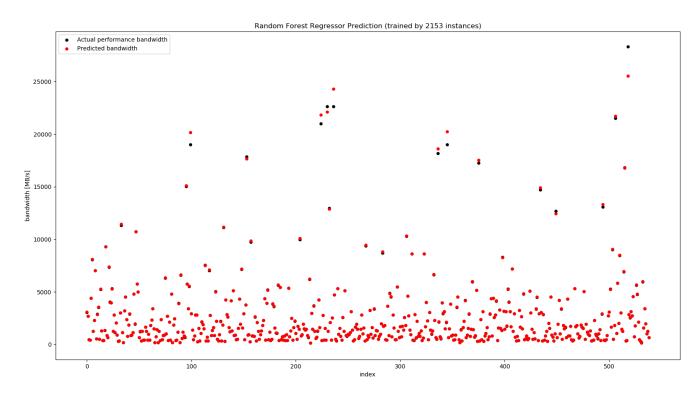


Evaluation - Auto-tuning



- •As I/O benchmark software, IOR was used
- The overhead of the approach on 1 MPI process is measured as 0.02 seconds for MPI open and 0.2 seconds for MPI write.

Evaluation - Performance Model



max_depth	Prediction errors under different depths			
max_ucpm	Accuracy	MAE	RMSE	
3	82.16 %	495.86	963.36	
4	90.52 %	287.92	576.51	
5	95.15 %	147.25	325.94	
7	98.87 %	46.27	180.32	
10	99.68 %	24.85	167.20	

Prediction errors in MB/s for training sets under different depth of each tree in the forest

Random forest regression performance model maxdepth = 10, Accuracy: 99.68 %

Conclusion

- a machine learning supported collective I/O auto-tuning solution for engineering applications
 - can be understood by engineers or scientists with little knowledge of parallel I/O without any post-processing utility
 - implemented upon the MPI-IO library to be compatible with MPI based engineering applications, and be portable to different HPC platforms as well
- an accurate indicator of the expected collective I/O performance
 - can capture parallel I/O behavior as a function of application and file system characteristics
 - can provide insights into the metrics that impact I/O performance significantly

Future Work

- new parameters can be easily integrated to auto-tuning configuration files
- the auto-tuning solution will be tested on engineering applications in different professional areas to show the usability
- searching process can be reduced via performance models to consume less computing resources

Thanks for listening!

hpcabagb@hlrs.de

