
Improving Collective I/O Performance with 
Machine Learning Supported Auto-tuning

Ayse Bagbaba

High Performance Computing Center Stuttgart

hpcabagb@hlrs.de

mailto:hpcabagb@hlrs.de



Outline

• The Problem and Setup
• Motivation & Objectives
• Experiments
• Performance Factors
• Modeling

• Methodology
• I/O Auto-tuning
• Performance Models

• Evaluation
• Evaluation 1: Influence of Auto-tuning
• Evaluation 2: Validation of Performance Model

• Conclusion and Future Work

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




Problem Statement
• Collective I/O is one of the most important I/O access 

optimizations 

• Various layers offer tunable parameters for improving collective I/
O performance 

• Finding good configurations of an I/O application is often 
challenging 
• complex interdependencies between the multiple layers
• diversity among applications and HPC platforms
• the size of configuration space
• the lack of time or experience

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




Need for an automatically tuning solution for 
collective I/O operations 

• compatible with as many 
engineering applications as 
possible,

• usable for engineers and 
scientists with little 
knowledge of parallel I/O, 

• portable across multiple HPC 
platforms

•follow the current MPI standard,  

•run transparently to the users, 

•produce acceptable little 
overhead,  

•improve I/O performance 
automatically

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




System Specifications

• All evaluations were made on Hazel Hen (Cray XC40) 
with an InfiniBand connected Lustre file system
• with a peak performance of 7.42 PFLOPS, Hazel Hen is one of 

the most powerful HPC systems in the world

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




Impact of Wrong Parameters - an 
example

striping over 4 OSTs was about 
71% better than the 
performance of striping over 16 
OSTs 

- disabling the collective 
buffering for collective I/O 
achieved about 269% 
improvement for writing 
performance, for non-small data 
transfer size

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




Performance Factors

• How to set the values of these configuration parameters?
• How to create a performance predictor based on them?

number of 
MPI 
processes

data 
transfer 
size

MPI-IO 
subroutine

romio cb 
read

romio cb 
write

striping 
factor

striping 
unit

cb buffer 
size

cb nodes

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




Modeling
• The I/O performance model can be formally defined as 

follows:

• The modeling approach represents the similar cases that 
can be represented by using a single model
• Machine learning may provide an appropriate method 

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




Methodology

Validate with real 
applications  Validate approach with real applications from project partners

Support with machine 
learning

Evaluate algorithms e.g, machine learning techniques to automate the search best 
parameter set

Find out the best 
configuration

Find the best parameters for MPI-IO layer to allow more efficient usage of I/O 
resources

Use self-implemented 
benchmarks and 

applications

Transfer results to synthetic and real HPC applications which have more complex I/O 
patterns

Characterize collective I/
O performance

Use IOR with simple I/O patterns to evaluate the impact of the filesystem and 
application characteristics

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




I/O Auto-tuning 

• I/O auto-tuning framework for MPI-IO library 
• tune I/O configuration parameters between layers 

transparently
• use predictive models

• characterize collective I/O
• assist engineers/administrators in finding the better configuration,
• use the knowledge of prior runs to choose the next promising configuration

• Knowledge bridge between application users and 
system administrators

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




I/O Auto-tuning  - Approach

Optimization approach consists 
of three basic steps:

• identifying configurations’ 
searching scope,

• choosing the best 
configuration parameters,

• suggesting or tuning.

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




I/O Auto-tuning  - Modules

• Monitoring Module
• surrounds MPI-IO layer

• Tuning Module

• Optimization Engine Module

• Analysis Module

• These modules support each 
other as a team

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




Performance Models
• Provides a performance estimate

• create a performance predictor model to be 
expected from a given set of fixed and variable 
parameters
• this performance model is trained on a number 
of samples
• performance is estimated on the validation set

Training Set Configurations’ 
Scope

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




Evaluation - Auto-tuning

•As I/O benchmark 
software, IOR was 
used

• The overhead of 
the approach on 1 
MPI process is 
measured as 0.02 
seconds for MPI 
open and 0.2 
seconds for MPI 
write.

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




Evaluation - Performance Model

Random forest regression performance model 

maxdepth = 10, Accuracy: 99.68 %

Prediction errors in MB/s for training 
sets under
different depth of each tree in the forest

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




Conclusion 

• a machine learning supported collective I/O auto-tuning 
solution for engineering applications 
• can be understood by engineers or scientists with little knowledge of 

parallel I/O without any post-processing utility
• implemented upon the MPI-IO library to be compatible with MPI based 

engineering applications, and be portable to different HPC platforms as 
well

• an accurate indicator of the expected collective I/O 
performance
• can capture parallel I/O behavior as a function of application and file 

system characteristics
• can provide insights into the metrics that impact I/O performance 

significantly

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




Future Work

• new parameters can be easily integrated to auto-tuning 
configuration files
• the auto-tuning solution will be tested on engineering 

applications in different professional areas to show the 
usability
• searching process can be reduced via performance 

models to consume less computing resources

Ayse Bagbaba, Improving Collective I/O Performance with Machine Learning Supported Auto-tuning




Thanks for listening!

hpcabagb@hlrs.de



	Slide 1
	Outline
	Problem Statement
	Slide 4
	System Specifications
	Impact of Wrong Parameters - an example
	Performance Factors
	Modeling
	Methodology
	I/O Auto-tuning 
	I/O Auto-tuning  - Approach
	I/O Auto-tuning  - Modules
	Performance Models
	Evaluation - Auto-tuning
	Evaluation - Performance Model
	Conclusion
	Future Work
	Slide 18

