
Automatically Avoiding Memory Access
Conflicts on SX-Aurora TSUBASA

Naoki Ebata*, Ryusuke Egawa†*, Yoko Isobe†‡, Ryoji Takaki§, Hiroyuki Takizawa†*

* Graduate School of Information Sciences, Tohoku University, naoki.ebata.r7@dc.tohoku.ac.jp

† Cyberscience Center, Tohoku University, {egawa, isobe, takizawa}@tohoku.ac.jp

‡ NEC Corporation

§ Japan Aerospace Exploration Agency, ryo@isas.jaxa.jp

iWAPT2020

Outline
 Introduction

Proposed metric

Proposed C++ library

Performance evaluation

Conclusions and future work

iWAPT2020

Outline
 Introduction

Proposed metric

Proposed C++ library

Performance evaluation

Conclusions and future work

iWAPT2020

Background
Recently, the performance of many scientific applications

is limited by the sustained memory bandwidth.
 strong demands for a computing system that can
achieve high sustained memory bandwidth.

iWAPT2020

SX-Aurora TSUBASA Vector
Engines (VEs) have world’s top-
class theoretical memory
bandwidth.
• SX-Aurora TSUBASA VEs : modern vector

processors.

• The theoretical memory bandwidth of a VE
 1.2 TB/s.

• They are highly suited to execute memory-
intensive applications.

https://jpn.nec.com/hpc/sxauroratsubasa/features/index.html?

https://jpn.nec.com/hpc/sxauroratsubasa/features/index.html?

Memory Access Conflicts
Although VEs have a high theoretical memory bandwidth,

memory access conflicts degrade the sustained memory
bandwidth.
• A memory access conflict means that multiple accesses to a specific memory

bank or port occur at the same time and conflict.

• They degrade the sustained memory bandwidth.

 Large negative effects of memory access conflicts are
observed on VEs.

iWAPT2020

Preliminary Evaluation
Executing vector add operations vector add (following

code) on a VE (single core) while changing its vector length.

iWAPT2020

At some array sizes, sustained
memory bandwidths drop
significantly due to access
conflicts.

for(int i = 0; i < N; i++){
a[i] += b[i];

}

Vector add

Traditional techniques
Padding is a widely used code tuning technique to avoid

memory access conflicts.

By inserting extra elements to an array, optimizing the
memory access patterns.
• Example: double a[N][M]  double a[N][M+p]

However, the code optimization and tuning of the padding
size p needs to be manually done by programmers, and it
is a tedious task for programmers.

iWAPT2020

Our Goal & Approach
Goal

• Automatically avoid memory access conflicts on modern vector processors
(VEs).

• There are some related works for automatically optimizing memory accesses to
avoid access conflicts on CPU/GPU. For example, Shuang Gao et. al has reported
the effective method to avoid bank conflicts on a CUDA architecture.

• G. D. P. Shuang Gao, “Optimizing cuda shared memory usage,” in SC15 Poster,
2015.

• However, the memory architecture of modern vector processors is totally different
from them. Thus, they cannot be applied to VEs directly.

Approach
• Predicting memory accesses conflict using a simple metric.

• Implementing an array-like C++ library "abc" that allocates a memory chunck
so as to prevent memory access conflicts.

iWAPT2020

Outline
 Introduction

Proposed metric

Proposed C++ library

Performance evaluation

Conclusions and future work

iWAPT2020

Module

bankbankbankbankbankbank
…

bankbankbankbankbankbank
…

…

Module

bankbankbankbankbankbank
…

bankbankbankbankbankbank
…

…

Main memory configuration of VEs
Main memory consists

of multiple memory
modules and channels
and banks.
• Modules: 6 HBM2 module / VE

• Channels: 8 channels / module

• Banks: 32 banks / channel (VE
Type 10B)

iWAPT2020

LL
C

Module

bankbankbankbankbankbank
…

bankbankbankbankbankbank
…

…

…

…

channel

channel

How data are allocated to memory banks?
A sequence of memory addresses is assigned to physical

memory banks by round-robin for memory allocation.

iWAPT2020

m = 0

c = 0

b = 0 1 … 31

c = 1

c = 7

…

…

…

…

m = 1

b = 0 1 … 31

…

…

…

m = 5

b = 0 1 … 31

…

…

…

: The b-th bank of the c-th channel in the m-th memory module

Proposed metric
A simple metric 𝒅 to predict access conflicts between two

arrays.
• In this paper, we focus on bank conflicts between arrays.

𝒅 is defined as following equation.

• 𝐴𝐷𝑅𝑆𝑎 , 𝐴𝐷𝑅𝑆𝑏 : The addresses of a head element of array a, b (&a[0], &b[0])

• 𝑁𝑏𝑎𝑛𝑘 : Total number of memory banks.

• 𝑆𝑐𝑒𝑙𝑙 : Size of memory cell. Memory cell is a continuous data region handled by
VEs as one unit.

iWAPT2020

What the metric means?
 Simply stated, 𝒅 means the distance between two arrays.

• It is assumed that bank conflicts frequently occur in specific distances.

 Example:
• In following figure, d_ac = 1, d_ad = 5, d_cd = 4, d_ae = 48(=6x8), d_ce = 47, …

• If head elements of two arrays are assigned to same bank (a, b in following figure),
then d_ab = 0.

iWAPT2020

m = 0

c = 0

b = 0 1 … 31

c = 1

c = 7

…

…

…

…

m = 1

b = 0 1 … 31

…

…

…

m = 5

b = 0 1 … 31

…

…

…

a[0], b[0]

c[0]

d[0]

e[0]

Relationship between 𝒅 and performance
We investigate the

relationship for vector add
kernel.

 It can be seen that 𝒅 is a good
representation of the
characteristics of bank
conflicts.
• There is an obvious tendency that the

sustained memory bandwidth
degrades when 𝒅 is approximately a
multiple of 512.

iWAPT2020

512 x 0 512 x 1 512 x 2 512 x 3

Outline
 Introduction

Proposed metric

Proposed C++ library

Performance evaluation

Conclusions and future work

iWAPT2020

Proposed C++ class library “abc”
abc consists of two classes abc::group and abc::array.

• abc::array: An array can be replaced with abc::array.

• abc::group: Multiple instances of abc::array are grouped by using an instance
of abc::group.

iWAPT2020

a

abc::array a

b

abc::array b

c

abc::array c

d

abc::array d
e

abc::array e

abc::group g1
abc::group g2

The role of abs::group
Our library allocates the memory to each abc::array

instances so as not to occur access conflicts between
abc::array instances belonging to a same abc::group.

iWAPT2020

a

abc::array a

b

abc::array b

c

abc::array c

d

abc::array d
e

abc::array e

abc::group g1
abc::group g2

No conflicts No conflicts

Maybe
conflict

Example
Sample implementation of vector add using abc.

iWAPT2020

1 int main(){
2 constexpr int N = 100;
3 abc::group sample;
4 abc::array<double> a(N, sample), b(N, sample);
5
6 // initialize
7 for(int i = 0; i < N; i++){
8 a(i) = 1.0;
9 b(i) = 2.0;
10 }
11 // vector add
12 for(int i = 0; i < N; i++) b(i) += a(i);
13 }

How it works

iWAPT2020

1. The constructor of
abc::array allocates the
memory region of (array
size + margin) bytes.

2. abc::group assigns a bank.

3. Calculate the padding size
and pad the pointer.

The rule of bank assignments
 For the i-th abc::array instance, abc::group assigns a bank

according to the following rule.

• ID means that the number of banks to be assigned counting from the 0-th
bank of 0-th channel of 0-th module.

• For example, the ID of 0-th bank of 0-th channel of 0-th module is 0, the ID of
0-th bank of 0-th channel of 1-th module is 1, the ID of 31-th bank of 7-th
channel of 5-th module is 1535.

The objective of this rule is to assign banks so as not to
exist any pair of abc::array instances whose d is close to
multiple of 512.

iWAPT2020

Outline
 Introduction

Proposed metric

Proposed C++ library

Performance evaluation

Conclusions and future work

iWAPT2020

Experimental setup

SX-Aurora TSUBASA A300-8

VE Type Type 10B

Compiler nc++ (NCC) 2.5.1

VEOS veos-2.2.2-1.el7.x86 64

Theoretical memory bandwidth 1.20 (TB/s)

Theoretical computational performance 2.15 (TFLOPS)

iWAPT2020

Benchmarks
• Vector add

• UPACS-Parts (CFD application kernels)

System specification

Vector add
 We evaluated the proposed method by

vector add.
• We run both normal and abc code with single core.

 Our method can successfully avoid
successfully avoids performance
degradations caused by memory access
conflicts.

 The average performance of abc
implementation is lower than one of the
original code.
• It is side effect of data rearrangement of abc.

• Since the vector add is a quite simple kernel which uses
only two arrays, our data rearrangement may cause a data
congestion on a specific channel.

iWAPT2020

UPACS-Parts
UPACS-Parts are kernel codes used in UPACS, which is a

CFD code for aerospace applications that has been
developed by JAXA(Japan Aerospace eXploration Agency).

We evaluated our method for four kernels:
• Streaming type: cflux, vflux

• Stencil type: cfacev, muscl

• These performance is limited by the sustained memory bandwidth.

Since the original codes of UPACS-Parts is written in
Fortran, we rewrote them in C++.

They are parallelized with OpenMP and we run them with
8 core.

iWAPT2020

Streaming type: cflux, vflux
At the most array sizes, our method mitigates

performance degradations.

iWAPT2020

cflux vflux

Stencil type: muscl, cfacev
As in streaming type, our method successfully avoids

performance degradations.

iWAPT2020

muscl cfacev

Remaining performance degradations
 In both of streaming type and stencil type, there are some

array sizes where small performance degradations exists
despite the facts that our method is applied.

There are 2 possible reasons:
• Both of them are not took into account in abc.

1. Multiple accesses from other threads conflict.

2. Accesses to the elements of a same array conflict.

iWAPT2020

Outline
 Introduction

Proposed metric

Proposed C++ library

Performance evaluation

Conclusions and future work

iWAPT2020

Conclusions & Future Work
Conclusions

• Intra-array bank conflicts can be avoided by tuning the relative distance
between two arrays that is assumed to be accessed at the same time.

• We introduced a metric representing the distance in terms of memory bank.

• This tuning method is automated as an array-like C++ class.

• We demonstrated our method can mitigate negative effects of memory
access conflicts on CFD application kernels.

 Future Work
• We will implement our approach in the form of widely-used libraries for VEs.

• Now, our proposed method is specialized for VEs. Thus, it is not portable to other
platforms.

iWAPT2020

Acknowledgments
This work is partially supported by:

• MEXT Next Generation High-Performance Computing Infrastructures and
Applications R&D Program “R&D of
A Quantum-Annealing Assisted Next Generation HPC Infrastructure and its
Applications ”

• Grant-in-Aid for Scientific Research(B) #16H02822 and #17H01706

iWAPT2020

