
Tørring et al: IPDPS, iWAPT 2021, May 21

Autotuning Benchmarking Techniques:
A Roofline Model Case Study

Jacob O. Tørring, Dr. Jan Christian Meyer, Prof. Anne C. Elster

Department of Computer Science
Norwegian University of Science and Technology (NTNU)

Motivation

— Scheduling and hardware selection
— Modelling the performance of architectures [1]
— Roofline model [2] to compare systems
— Theoretical peak performance is often available from vendors
— However practical peak performance is often far lower
— Find peak practical performance through autotuning benchmarks

2 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Contributions

— Tool for automatically generating practical performance Roofline models using high
performing autotuned benchmarks

— Significant search time improvements from autotuning benchmarking techniques,
up to 116.33x

— General autotuning benchmarking techniques that can be applied to any autotuning
application

3 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Outline

Motivation and Contributions

Roofline model

Autotuning

Experimental Setup

Results and Discussion

Conclusion and Future Work

4 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Roofline model

— Visual performance model

— Developed by Williams et al. [2]

— Operational Intensity
OI = operations

byte

— Fα(OI) = min(Bα · OI,Fp)

— High OI = Peak Compute
Performance (Fp)

— Low OI = Peak Memory
Performance (Bα)

— DRAM vs L3 Cache

5 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Roofline model: Benchmarks and Related Work

— Fp is usually given by the High OI benchmark DGEMM
• Double-precision GEneral Matrix Multiply (DGEMM)
• C ← αAB + βC
• A = n × k , B = k ×m, C = n ×m, α = 1.0, β = 0.0

— Bα is usually given by the Low OI benchmark TRIAD from STREAM [3]
• Double-precision vector addition
• TRIAD: C ← A + γB, γ = 1.0

— Intel Advisor Tool: Proprietary and limited to Intel processors
— Ilic and Denoyelle [4], as well as Marques et al. [5]

6 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Autotuning Search space

— Find Fp through autotuning DGEMM computations.
— Find the optimal matrix dimensions n,m, k to maximize hardware performance
— Start by constraining the search space

• With steps of power of 2 from 64 to 4096 for n and m and 2 to 2048 for k
• DGEMM: S = n ×m × k , |S| = 7 · 7 · 11 = 539
• Through experimentation this was reduced further.
• From 512 to 4096 for n and m and 64 to 2048 for k .
• The cardinality is thus 4 · 4 · 6 = 96.

7 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Autotuning Techniques

— Sample cost is low =⇒ balancing overhead of advanced techniques vs. gathering
more samples

— Search space is small =⇒ random search might not be ideal compared to
exhaustive search

— Exhaustive search is an easy and high performing alternative in this scenario
— It also clearly illustrates the benefits of autotuning benchmarking techniques

8 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Autotuning Benchmarking

— Iteration: The
program executes the
DGEMM/TRIAD
operations several
times

— Invocation: The
benchmarking
program is executed
several times

— Take the mean of all
iterations and all
invocations

9 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Autotuning Benchmarking

— Stop conditions
1. Total time threshold for each invocation of the benchmarking process
2. Maximum number of iterations of the benchmark for each sample

— Early stopping conditions
• Construct a confidence interval of the mean value for each benchmarked sample
• Continually update the confidence interval throughout the benchmarking process
• Only used as a heuristic, due to the normality assumption

— This enables early stopping of the benchmarking when
3. The mean has achieved a sufficient accuracy

upper
mean − 1 < ∆, e.g. ∆ = 0.01, upper confidence interval is 501, mean value is 500, then
501
500 − 1 < 0.01

4. The confidence interval’s upper bound is lower than the previously best sample
upper < best

10 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Autotuning Benchmarking

— Welford’s Online variance algorithm

• Constant time variance calculation regardless of iteration count

• Only need to store two variables (mean and variance)

— Future work includes other data structures and other statistical methods as
heuristics

11 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Autotuning Pipeline

12 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Experimental Setup

— Experiments are conducted on the Idun [6] cluster at NTNU
— Tested on dual-socket Intel systems

• With 2650v4, 2695v4, Gold 6132 and Gold 6148 CPUs

— Theoretical peak compute performance: Ft = freq · cores ·AVXtype ·AVXunits ·CPUs

— Theoretical peak memory performance: Bt = freq · channels · bytes
cycle

— Maximum 200 Iterations, 10 invocations, 10s timeout for each invocation and a 99%
CI delta of 1%.

— Executed using Intel’s MKL BLAS implementation and SLURM

13 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Results: DGEMM Performance

— Intel’s related work [7] was able to
achieve 52.08% of theoretical
maximum

— Autotuned dual-socket results range
from 75.13%–91.93%

— Autotuned single-socket results range
from 87.20%–98.06%

— AVX512 workloads are usually clocked
lower

14 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Results: TRIAD Performance

— Autotuned DRAM dual-socket results
range from 99.37%–109.25%

— Autotuned DRAM single-socket results
range from 105.26%–115.90%

— We believe that the performance
exceeding 100% is due to the effect of
cache on memory performance

15 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Results: Early stopping optimizations

— "c": Stop condition 3 (absolute CI)

— "c+i": Additionally stop condition 4 (relative
CI) applied to "inner" iteration loop

— "c+i+r": Reversal of search order

— "c+i+o": Stop condition 4 (relative CI) applied
to iteration and "outer" invocation loop

— "c+i+o+r": Reversal of search order

For Intel 2695v4 we applied a lower bound on stop condition 4 of 100 iterations, to ensure that it could find the highest performing configurations, that peaked late
into the iteration count. Full details and exploration of this is available in the paper

16 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Results: Single socket performance accuracy

— Single socket
performance
accuracy

— 99.3% to 99.8%
compared to
non-optimized
benchmarking results

17 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Results: Dual socket performance accuracy

— Dual socket
performance
accuracy

— 98.3% to 100.1%
compared to
non-optimized
benchmarking results

— The highest
performing sample for
2695v4 scales late
into the iteration
count

18 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Results: Optimizations Performance

19 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Discussion: Optimizations

— The performance of stop
condition 4 is dependent on
the search order of the
autotuning process

— Samples with low performance
and a high cost early in the
search cannot be skipped due
to lack of previous high
performance alternatives

— Search should therefore try to
target low cost samples
initially

20 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Conclusion

— Tool for automatically generating practical performance Roofline models using high
performing autotuned benchmarks

— Significant search time improvements from autotuning benchmarking techniques,
up to 116.33x

— General autotuning benchmarking techniques that can be applied to any autotuning
application

21 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Future work

— Benchmarking L2 and L1 cache using more accurate benchmarks and
measurements

— Changing the data structure and how we compare relative performance between
samples, to include more information than the mean value of the sample

— This change can potentially lead to more accurate predictions for when it is safe to
terminate

22 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

Thank you for listening!

Contact information
Jacob O. Tørring: jacob.torring@ntnu.no

Jan Christian Meyer: jan.christian.meyer@ntnu.no
Anne C. Elster: elster@ntnu.no

23 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

References I

[1] Jan Christian Meyer. Performance Modeling of Heterogeneous Systems. eng. Accepted:
2014-12-19T13:39:21Z. Norges teknisk-naturvitenskapelige universitet, Fakultet for
informasjonsteknologi, matematikk og elektroteknikk, Institutt for datateknikk og
informasjonsvitenskap, 2012. ISBN: 978-82-471-4015-4. URL:
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/253074 (visited on 02/10/2021).

[2] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An Insightful Visual Performance
Model for Floating-Point Programs and Multicore Architectures. en. Tech. rep. 1407078. Sept. 2009,
p. 1407078. DOI: 10.2172/1407078. URL: http://www.osti.gov/servlets/purl/1407078/ (visited
on 08/10/2020).

[3] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance Computers.
Tech. rep. A continually updated technical report. http://www.cs.virginia.edu/stream/. Charlottesville,
Virginia: University of Virginia, 1991-2007. URL: http://www.cs.virginia.edu/stream/.

24 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/253074
https://doi.org/10.2172/1407078
http://www.osti.gov/servlets/purl/1407078/
http://www.cs.virginia.edu/stream/

References II

[4] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. “Cache-aware Roofline model: Upgrading the
loft”. en. In: IEEE Computer Architecture Letters 13.1 (Jan. 2014), pp. 21–24. ISSN: 1556-6056. DOI:
10.1109/L-CA.2013.6. URL: http://ieeexplore.ieee.org/document/6506838/ (visited on
08/12/2020).

[5] Diogo Marques et al. “Application-driven Cache-Aware Roofline Model”. en. In: Future Generation
Computer Systems 107 (June 2020), pp. 257–273. ISSN: 0167-739X. DOI:
10.1016/j.future.2020.01.044. URL:
http://www.sciencedirect.com/science/article/pii/S0167739X19309586 (visited on
08/12/2020).

[6] Magnus Själander et al. “EPIC: An Energy-Efficient, High-Performance GPGPU Computing Research
Infrastructure”. In: arXiv:1912.05848 [cs] (Dec. 2020). arXiv: 1912.05848. URL:
http://arxiv.org/abs/1912.05848 (visited on 01/18/2021).

[7] Ying Hu and Shane A Story. Tips to Measure the Performance of Matrix Multiplication Using Intel R©...
en. Dec. 2017. URL: https://www.intel.com/content/www/us/en/develop/articles/a-simple-
example-to-measure-the-performance-of-an-intel-mkl-function.html (visited on 08/10/2020).

25 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21

https://doi.org/10.1109/L-CA.2013.6
http://ieeexplore.ieee.org/document/6506838/
https://doi.org/10.1016/j.future.2020.01.044
http://www.sciencedirect.com/science/article/pii/S0167739X19309586
http://arxiv.org/abs/1912.05848
https://www.intel.com/content/www/us/en/develop/articles/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://www.intel.com/content/www/us/en/develop/articles/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html

	Motivation and Contributions
	Roofline model
	Autotuning
	Experimental Setup
	Results and Discussion
	Conclusion and Future Work
	References

