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Motivation

— Scheduling and hardware selection
— Modelling the performance of architectures [1]
— Roofline model [2] to compare systems
— Theoretical peak performance is often available from vendors
— However practical peak performance is often far lower
— Find peak practical performance through autotuning benchmarks
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Contributions

— Tool for automatically generating practical performance Roofline models using high
performing autotuned benchmarks

— Significant search time improvements from autotuning benchmarking techniques,
up to 116.33x

— General autotuning benchmarking techniques that can be applied to any autotuning
application
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Roofline model

— Visual performance model

— Developed by Williams et al. [2]

— Operational Intensity
OI = operations

byte

— Fα(OI) = min(Bα · OI,Fp)

— High OI = Peak Compute
Performance (Fp)

— Low OI = Peak Memory
Performance (Bα)

— DRAM vs L3 Cache
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Roofline model: Benchmarks and Related Work

— Fp is usually given by the High OI benchmark DGEMM
• Double-precision GEneral Matrix Multiply (DGEMM)
• C ← αAB + βC
• A = n × k , B = k ×m, C = n ×m, α = 1.0, β = 0.0

— Bα is usually given by the Low OI benchmark TRIAD from STREAM [3]
• Double-precision vector addition
• TRIAD: C ← A + γB, γ = 1.0

— Intel Advisor Tool: Proprietary and limited to Intel processors
— Ilic and Denoyelle [4], as well as Marques et al. [5]
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Autotuning Search space

— Find Fp through autotuning DGEMM computations.
— Find the optimal matrix dimensions n,m, k to maximize hardware performance
— Start by constraining the search space

• With steps of power of 2 from 64 to 4096 for n and m and 2 to 2048 for k
• DGEMM: S = n ×m × k , |S| = 7 · 7 · 11 = 539
• Through experimentation this was reduced further.
• From 512 to 4096 for n and m and 64 to 2048 for k .
• The cardinality is thus 4 · 4 · 6 = 96.
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Autotuning Techniques

— Sample cost is low =⇒ balancing overhead of advanced techniques vs. gathering
more samples

— Search space is small =⇒ random search might not be ideal compared to
exhaustive search

— Exhaustive search is an easy and high performing alternative in this scenario
— It also clearly illustrates the benefits of autotuning benchmarking techniques
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Autotuning Benchmarking

— Iteration: The
program executes the
DGEMM/TRIAD
operations several
times

— Invocation: The
benchmarking
program is executed
several times

— Take the mean of all
iterations and all
invocations
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Autotuning Benchmarking

— Stop conditions
1. Total time threshold for each invocation of the benchmarking process
2. Maximum number of iterations of the benchmark for each sample

— Early stopping conditions
• Construct a confidence interval of the mean value for each benchmarked sample
• Continually update the confidence interval throughout the benchmarking process
• Only used as a heuristic, due to the normality assumption

— This enables early stopping of the benchmarking when
3. The mean has achieved a sufficient accuracy

upper
mean − 1 < ∆, e.g. ∆ = 0.01, upper confidence interval is 501, mean value is 500, then
501
500 − 1 < 0.01

4. The confidence interval’s upper bound is lower than the previously best sample
upper < best
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Autotuning Benchmarking

— Welford’s Online variance algorithm

• Constant time variance calculation regardless of iteration count

• Only need to store two variables (mean and variance)

— Future work includes other data structures and other statistical methods as
heuristics
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Autotuning Pipeline
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Experimental Setup

— Experiments are conducted on the Idun [6] cluster at NTNU
— Tested on dual-socket Intel systems

• With 2650v4, 2695v4, Gold 6132 and Gold 6148 CPUs

— Theoretical peak compute performance: Ft = freq · cores ·AVXtype ·AVXunits ·CPUs

— Theoretical peak memory performance: Bt = freq · channels · bytes
cycle

— Maximum 200 Iterations, 10 invocations, 10s timeout for each invocation and a 99%
CI delta of 1%.

— Executed using Intel’s MKL BLAS implementation and SLURM
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Results: DGEMM Performance

— Intel’s related work [7] was able to
achieve 52.08% of theoretical
maximum

— Autotuned dual-socket results range
from 75.13%–91.93%

— Autotuned single-socket results range
from 87.20%–98.06%

— AVX512 workloads are usually clocked
lower
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Results: TRIAD Performance

— Autotuned DRAM dual-socket results
range from 99.37%–109.25%

— Autotuned DRAM single-socket results
range from 105.26%–115.90%

— We believe that the performance
exceeding 100% is due to the effect of
cache on memory performance

15 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21



Results: Early stopping optimizations

— "c": Stop condition 3 (absolute CI)

— "c+i": Additionally stop condition 4 (relative
CI) applied to "inner" iteration loop

— "c+i+r": Reversal of search order

— "c+i+o": Stop condition 4 (relative CI) applied
to iteration and "outer" invocation loop

— "c+i+o+r": Reversal of search order

For Intel 2695v4 we applied a lower bound on stop condition 4 of 100 iterations, to ensure that it could find the highest performing configurations, that peaked late
into the iteration count. Full details and exploration of this is available in the paper
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Results: Single socket performance accuracy

— Single socket
performance
accuracy

— 99.3% to 99.8%
compared to
non-optimized
benchmarking results

17 / 25 Tørring et al: IPDPS, iWAPT 2021, May 21



Results: Dual socket performance accuracy

— Dual socket
performance
accuracy

— 98.3% to 100.1%
compared to
non-optimized
benchmarking results

— The highest
performing sample for
2695v4 scales late
into the iteration
count
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Results: Optimizations Performance
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Discussion: Optimizations

— The performance of stop
condition 4 is dependent on
the search order of the
autotuning process

— Samples with low performance
and a high cost early in the
search cannot be skipped due
to lack of previous high
performance alternatives

— Search should therefore try to
target low cost samples
initially
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Conclusion

— Tool for automatically generating practical performance Roofline models using high
performing autotuned benchmarks

— Significant search time improvements from autotuning benchmarking techniques,
up to 116.33x

— General autotuning benchmarking techniques that can be applied to any autotuning
application
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Future work

— Benchmarking L2 and L1 cache using more accurate benchmarks and
measurements

— Changing the data structure and how we compare relative performance between
samples, to include more information than the mean value of the sample

— This change can potentially lead to more accurate predictions for when it is safe to
terminate
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Thank you for listening!

Contact information
Jacob O. Tørring: jacob.torring@ntnu.no

Jan Christian Meyer: jan.christian.meyer@ntnu.no
Anne C. Elster: elster@ntnu.no
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