Scalable Performance Prediction of
Irregular Workloads in Multi-Phase
Particle-In-Cell Applications

Sai Prabhakar Rao Chenna?, Sivaramakrishnan
Balachandar?, Greg Stitt!, Herman Lam?

!Department of Electrical and Computer Engineering
’Mechanical and Aerospace Engineering

Center for Compressible Multiphase Turbulence (CCMT)

University of Florida, Gainesville, Florida 32611

IIIIIIIIII

= Motivation & Goal
— Need for Scalable Performance prediction of
Irregular workloads on Large-scale systems
— Multi-Phase Particle-In-Cell (MP-PIC) Applications

= Approach

— Trace-driven Workload prediction

— Performance Modeling & Simulation
— Advantages & Limitations

= Evaluation

— CMT-nek HPC application

— Particle-decomposition algorithms
— Hele-shaw simulation case-study
— Performance predictions

= Conclusions & going forward
CCMT

I e e
UFFotS: Motivation

O Performance prediction is critical in Particle distribution Heatmap on 4096 processors

order to identity performance
bottlenecks on large-scale systems

» Cycle-accurate simulations infeasible
owing to system complexity

» Analytical performance modeling
approaches usetul to generate faster
performance predictions

d Most applications employ static
workload distribution when scaling
on large-scale systems

» Some applications generate dynamic -
workload during execution e.g. MP- - R Y Y S Y T S S S |
PIC — thereby making it harder to Per 1000 timesteps

predict performance

d Need an accurate, scalable prediction framework for such irregular applications

CCMT
B e, N\ N, 2 Tz hhheee——S—S—S—S—S——

-3 - _— __ = .

UFRONS: Multi-Phase Particle-In-Cell(MP PIC)

Q Multi-phase PIC:

» Used to model fluid-particle and particle-
particle interaction in CFD applications

» Eulerian frame of reference for fluid phase
» Lagrangian frame of reference for particle
phase
Q Applications:
» Cyclone simulation
» Fluidized bed reactors

» Chemical looping combustion

- orid
/ gri

@
£ & ..

e® |lo *®

-9 & "
“el® o J—particles
e ole o*

Spatial Domain

Urioti: MP-PIC: Particle solver loop

 Key stages of operations
» Particle-pusher: Updating particle location based on the change in position

» Interpolation: Interpolate eulerian (fluid) properties from the grid-points on to
the lagrangian particle

» Equation solver: Calculate the lagrangian properties at each individual
particle location

» Projection: Project back lagrangian properties back to eulerian grid.

7

Particle-
| pusher i!
.
[Projection @[mterpolaﬂon}
J

E Equation <:D
-solver

" MP-PIC: Computation workload

UF FLORTDA
Q Computational workload is Particle-distribution across ranks in Shock-tube simulation (2048 cores)
categorized Into:

. ﬁ-W
O Element workload (# of spectral .
elements/processor) — static £
. C . " 0
» Remains fixed upon initial domain 8 .
decomposition * —tra 75" =k 113

Q Particle workload (# of :

. 1 / d o 1357 9111315171921232527293133353739 414345474951 535557596163 656769 71737577 798183858789 91939597
particles/processor) - dynamic:

. Per 1000 time-steps
» Varies among processors:

depends on problem and mapping

algorithm .) o
> Varies during simulation: d Particle workload is a significant
depends on particle velocity parameter affeCting application
(problem-dependent) performance
O Ditficult to predict performance > Particle pusher O(Np)

» Interpolation O(Np+Ng)
» Projection O(Np+Ng)
» Collision forces O(Np?+Np*Ng)

cost due to dynamic workload
variation

CCMT Np —real particles ; Ng — ghost particles

sk MP PIC: Particle workload

QParticle workload(# of particles/processor) is dynamic:

Processor 0

Processor 2 Processor 3

Processor # of # of
elements particles

4

w N -k O

1
4
0

A NN

» Varies among processors: depends on
problem and mapping algorithm

wiis MP PIC: Particle workload

QParticle workload(# of particles/processor) is dynamic:

Processor 0

Processor 2 Processor 3

Processor # of # of
elements particles
4 1

Processor # of # of
elements particles
4

1
4
0

w N -k O
w N, O
>~ B b
L O

|~ 2~ B

wiis MP PIC: Particle workload

QParticle workload(# of particles/processor) is dynamic:

Processor 0

® { > Varies during runtime: depends on particle

X I_;felocity (problem-dependent)

Processor 2 Processor 3

Processor # of # of
elements particles
4 1

4 7
4 0
4 1

Processor # of # of
elements particles
4

1
4
0

w N -k O

0
1
2
3

|~ 2~ B

P 9

I.JP~II\«"15.RSIT'lr

TR Approach

d Problem:

> Performance Prediction of

. . . r
MP-PIC appllcatlons is enchmaiing AE',:."T“';;’“I race Collection
difficult owing to dynamic [CMT-nek]
workload fluctuations Training damEj @,amc,e vace
D SOlution: Prediction frameworkl

Configuration file
of particles:
b4 # of elements:
» Trace-driven performance e
. . algorithm:

prediction framework that:

> generates dynamic
workload on a target
system using application
trace

» Provides a fast modelling
and simulation platform to
predict application
performance

CCMT

110

Uriisiia. PDynamic Workload Generator (DWG)

1 Goal:

Dynamic Workload Generator

» Accurately predict the particle workload =
. : . Confgurationfl : l
on each processor during the simulation _— —~
4 Principle: e | o —
lements: A !]
. ‘e . . * Generator Computation
» Particle decomposition algorithm relies on |mesosis / / r:atrix !I
. . . Mappingagorithm: i :
particle location to map particles onto e {L
processor ,
» Particle location is independent on system |Pietiefl | — / : Z .: ;.
: Communication |/
configuration — problem dependent e e T e e A
. A L0 O Gy mll ey
» Hence single application trace is sufficient [muus | | T
3| 001 {00006 -0002| W ———
to predict particle workload on any system " Jusumus] dal
P p y sy o e e I whD
Conﬁguratlon T e e T —
.] ‘0.!1)998 O0007[-0000 | 10
d Dynamic Workload Generator: o] o

» Generate the particle workload per
processor by mimicking the particle-
mapping algorithm on the input particle
trace

11

Uriisiia. PDynamic Workload Generator (DWG)

4 Input: Input
» Configuration file: _/ Particle trace \

Particle ID location timestep
> Apoplicati fi t1 . e {6100 b 0TS BoTTe o0
pp lca lon Con lgura lon' 28:110‘9.23) 20:13003:0:00286:0:00148; 200
. . (8.1262.,0) (0.13008,0.00097,0.00208) 200
Particle count mapping S 167 0/ {0 1apas b/00152 b 0TS0 =
> (8.1442,0) (0.13002,0.00017,0.00178) 200
. (27.594.0) (0.13003,0.0027,0.00049) 200
27.879.0 0.13006,0.0022,0.00004 200
algorlthm 327.971.0; 20.13007.0.00326.0.0007)8) 200
» System configuration: Configuration file
of elements:
Processor count # of particles:
Box-dimensions:
. Particle-algorithm:
> Trace file: E i
. . Element-file:
» Particle location sampled at

fixed intervals across execution K /
d Output:

» Computation matrix
» Specifying total particles per Processor- Time-

ID particles step

Destination # of

3 3 3 Source rank rank particles Time-step
processor at a given 1teration 1348 1%:03153 200 o I
» Communication matrix: 3 s 200 @ wm
1350 9736 200 894 897 100
» Number of particles crossing 32wt 200 w mm
1353 9742 200 885 897 200

processor domain between
consecutive sample intervals

Uriisiia. PDynamic Workload Generator (DWG)

d Computation Load Generator: i

» Calculate processor owning the

particle by mimicking the mapping / '
algorithm @E
» Increment the particle counter for the ; .

Calculate the

corresponding processor residing processor

~—

"

» Repeat across all the sampling

-

J

Increment residing

Intervals oo cor cotmtar

d Communication Load Generator: '
» Check if the owner (processor) of

¢

For each sampling
interval

particle same across two consecutive
sampling intervals

For each particle

» If not, increment the send counter of

residing processor of previous rank

the preVious owner and receive { Calculate the Increment recv counter

counter of the current owner for the
given sampling interval

Check if current
residing processor
same as in previous
interval?

Increment send counter
of previous rank

13

IR |
Uriidiivh. Dynamic Workload Generator: Workflow

Particle
workload

Application

trace Generator

Input

/ Particle trace \

Output

Particle ID location timestep
(8,638,0) (0.13009,0.00007,0.0023) 200
(8,678,0) (0.13008,0.00138,0.00172) 200
(8,1108,0) (0.13003,0.00286,0.00148) 200 o . .
(8.1262,0) (0.13008,0.00097,0.00208) 200 Computatlon cost Communlcatlon cost
(8,1276,0) (0.13008,0.00134,0.00089) 200
(8,1307.0) (0.13008,0.00122,0.00306) 200 ”
(8.1442,0) (0.13002,0.00017,0.00178) 200 Processor- of Time- Yt
(27.594,0) (0.13003,0.0027,0.00049) 200 ID dicl . Destination ~ # of
(27.878,0) (0.13006,0.0022,0.00004) 200 articles ste . .
(27,971,0) (0.13007,0.00326,0.00078) 200 1346 p 9735 203) Source rank rank pal‘tldes Time-step

C f fl 1347 10018 200 860 857 100

1 1348 9744 200
onfiguration file 1349 o756 500 881 867 300

1350 9736 200 894 897 100
1351 10026 200 86 863 100

of elements:

of particles: 1352 9731 500

Box-dimensions: 1353 9742 200 885 897 200
Particle-algorithm:

Trace-file:

Element-file:

UNIVERSITY of

Uriisiith Modeling and Simulation

J Mo
>

>

>

del Generation:
Empirical modelling approach to generate

Training data

Benchmarking Trace Collection
Application
[CMT-nek]

6 B"arﬁicle trace

Configuration file

analytic performance models
Framework supports multiple regression
methods — linear regression, symbolic

Prediction framework

of particles:
<: # of elements:

of processors:
Mapping-
algorithm:

- 7

regression

Linear regression — efficient for single, two
parameter models

Symbolic regression’ — to generate fast and

accurate multi-parameter models

(] Simulation Platform:

>
>
>
>

CCMT

Input: Dynamic workload, performance

models, system configuration 1 Chenna, Sai P., Greg Stitt, and Herman Lam. "Multi-
. . : . . Parameter Performance Modeling using Symbolic
OUtPUt' Predicted Apphcatlon time Regression." 2019 International Conference on High

Simulator: BE-SST?2 Performance Computing & Simulation (HPCS). IEEE,
2019.

Currently, does not support trace-driven | 2 Ramaswamy, Ajay, et al. "Scalable behavioral

: : emulation of extreme-scale systems using structural
simulation simulation toolkit." Proceedings of the 47th International
Conference on Parallel Processing. 2018

115

UF [FLORIDA

Advantages & Limitations

d Advantages:
> Scalability Prediction:

» ldentity scalability bottlenecks
» Evaluate optimal processor count for large-| -«
scale PIC simulation
» Algorithm evaluation:
» Platform to evaluate multiple particle
decomposition algorithms
» Low-cost implementation provides quick
“proof of concept” ’

Processor count

1500

-

256

Particle workload: Resource Utilization

512

1024
Processor configuration

2048

4096

» Parameter tuning;:
» Tune application parameters based on their
impact on performance

1 Limitations:

» Trace collection:
» Difficult for large-scale runs — expensive &
often infeasible
» Trace files are huge — usually 10-100GB
> File-size « (# of particles * sampling-
CCMT frequency)

VirtualDub Error

e |

oK

16

-3 - _— __ = .
UFRGE Outline

= Evaluation

— CMT-nek HPC application

— Particle decomposition algorithms
— Hele-shaw simulation case-study
— Performance predictions

CCMT
N e, N N, 0 Tz eeee——S——S—S——S—

UNIVERSITY of

UF FLORIDA Application: CMT-nek (particle-solver)

= HPC application, Center for Compressible Multiphase Turbulence
University of FFlorida

— Proposed solver of

compressible

Navier-stokes equation for
compressible multiphase tflows

Pointwise
Volume to Surfaceto computation for
surface O(N2) ~ volume O(N2) volume pomts

Il Ill-"
[
= 9

Face data Computation for Derivative

4

Move particles Relocate
pamcles

D

B
|
B

1
:

Distribute point
Interpolate to .
Artianss particle force on
g(N3 No) volume data
(Y

O(N3,Np)

exchange 3 computation
face points :
O(N2) O(NENS) volug(eNe)omts

Architecture: Quartz @ LLNL

Intel Xeon E5 (Broadwell)

36 cores/node, 3018 nodes, 108k
cores

128GB memory/node

118

lllllllllll

 Standard particle decomposition Processor 0
technique
J Assigns particle to processor which o

owns corresponding element
d Pros:
» Tight particle-grid interaction

» Many operations are local to

each rank
Processor 2 Processor 3

D Cons: Processor # of # of
» Load/memory imbalance elements | particles

4

w N P O
~ B~ B

1
4
0

19

lllllllllll

d Decoupling particle-fluid for better Processor 0
scalability

 Each particle is stored with nearby i
particles in a bin-structure i_ _O_QI:__
 Pros: o 1
» Good load/memory balance L-oi_f_
> Better scalability
[Cons:

Processor 2 Processor 3

communication at every elements | particles

1teration 0 4 3

» Additional computational 1 4 2
overhead — bin calculation 2 4 2

3 4 2

* Zwick, David. "ppiclF: a parallel particle-in-cell library in Fortran." Journal of Open Source
Softar 4.37 (2019): 1400.

!
Uriicis Case-study: Hele-shaw simulation®

d Case-study: Hele-shaw simulation

10.00
-

d Particles: 599,257

5.000

2.500

d Elements: 216,225 ot S basao

Min: 2.394e-05

A Grid-size: 4 §y 00

- 15.00
' 10.00
- 5.000

dTrace sampling frequency: 100 ..

Max: 268.1
Min: 7.048e-15

_

* R. B. Koneru et al., “A numerical study of particle jetting in a dense particle bed driven by an
air-blast,” Physics of Fluids, vol. 32, no. 9, p.093301, 2020.

CCMT

121

Uriiciia. Results: Scalability prediction

dSetup: d Observations:

» Particle decomposition: Bin- > Peak particle-workload did not improve
based mapping from 2088 processors

» Processor count: 1044, 2088, » Maximum number of particle-bins
4176, 8352 generated — 1104

» Increasing processor count beyond 1104
wouldn’t scale particle workload

1120

Peak particles per processor
2500 1100 L

fv"—’dﬂv

Ins

1080

essor
N
o
o
(<)

—_
=
o
t=1

Ul

(=]

(=
=

—
(=]
~
=]

—_
=1
=
t=}

e] 044 COres =088 cOores e====A4176 cores 8352 cores

Number of particle b

Particles per proc
(9,1 o E‘
o o
o o

w
oo
L=}

o
w
o
t=1

100

500

900
1300
1700
2100
2500
2900
3300
3700
4100
4500
5300
5700
6100
6500
6900
7300
7700
8100
8500
8900
9300
9700

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time-steps Simulation time-steps

= 4900

Simulatio

CCMT
|22

Uriiciia. Results: Scalability prediction

JSetup: d Observations:

» Particle decomposition: Bin- ~ » Performance prediction of key particle-
based mapping solver kernels
» Processor count: 1044, 2088, » Average MAPE error — 8.42%

4176, 8352 » Peak MAPE error— 17.7%

20
5 18 B compute_force_postpart m rk3int M create_ghost_particles create_collision_particles
T
(] 16
&
- 14
Q
ST 12
U A
o
py <§t 10
2= 8
(]
[72]
0 6
<
: 4 I I
()
s 2

o]

2088 4176 8352

CCMT
0 I 23

-5 -~ __—
Uriiciita. Results: Algorithm evaluation

dSetup: d Observations:

» Particle decomposition: » Bin-based mapping has better particle
Bin-based mapping, workload distribution
element-based mapping » Couple of orders magnitude improvement
» Processor count: 1044, in peak particle workload

2088, 4176, 8352

Peak particle workload Peak particle workload
350000
_ 2500 o ©1044 42088 4176 - 8352
9 9 300000
#2000 @ A
O ool e O 250000
S S
S. 1500 / 2. 200000
o o
(V]
Q
% 1000 o= 2 1500pp s Mm"mmmm"“
4 (] W
S S 100000
B 500 €
(S @1044 A2088 #4176 -—8352 c 50000
a a
0 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Simulation time-steps Simulation timesteps

-5 -~ __—
Uriiciita. Results: Algorithm evaluation

dSetup: d Observations:

» Particle decomposition: » Resource Utilization(RU*) is poor in case
Bin-based mapping, of element-based mapping for Hele-shaw
element-based mapping case-study

» Processor count: 1044, » RU worsens for bin-based mapping when
2088, 4176, 8352 Increasing processor count beyond 1044

» Ideal processor count: 1104

Resource Utilization

[e2)
o

(%)
o

D
o

*RU = (# of processor with
atleast 1 particle per processor) /

total # of processors
10 I
0 — - — . I

1044 2088 4176 8352

Percentage
w
o

N
o

CCMT H Bin-based ™ element-based

|25

. -
Uriisiith. Results: Parameter Tuning

dProjection filter: el e e] -]
» Detines particle zone of — B
influence on neighboring grid-)) / >\]]
points - . L \-/ . .
» Filter size has an impact on - B
performance: - - - - -
» Determines number of
ghost particles per processor 4500
(N,) — particle workload 4000
» Determines Number of .
£3000
particle bins — scaling a
threshold 2,000
» ldentifying performance cost is S 1500
cruclal to evaluate accuracy vs 1000
cost trade-off 500 l
’ 1 2 4 8
Projection filter size

Image courtesy: https://www.researchgate.net/figure/Schematic-representation-of-the-interpolation-operator-in-Eqg-14-The-gray-
CCMT circle_figr_320796615

T e
Uriisiith. Results: Parameter Tuning

JProjection filter: J Observations:

» Detines particle zone of > create_ghost_particles — kernel
influence on neighboring generating the ghost particles per
grid-points processor

» Has an impact on » Number of ghost particles increase
performance: with filter size

» Determines number of
ghost particles per create_ghost_particles
processor (N,) — particle o
workload ' M prediction M validation

> Determines Number of 0.02

particle bins — scaling

threshold
» ldentifying performance cost

o
o o
o =
=t (7]

1s crucial to evaluate
accuracy vs cost trade-oft

Execution time per iteration
(seconds)

4

1 2
Projection filter size

CCMT

| 27

UFiictiss conclusion & Going Forward

d Performance Modeling of MP-PIC applications on Large-scale systems is
difticult

» Dynamic workload fluctuation due to non-homogenous particle distribution
 Presented a performance prediction framework:
» DWG for a problem simulation on any target system
» Modelling and simulation platform for faster performance predictions
d Demonstrated our prediction framework on MP-PIC application (CMT-nek):
» Scalability prediction — identified optimal processor count for particle workload
distribution
» Algorithm evaluation — Bin-based mapping provides better particle workload
distribution
» Performance tuning — quantified performance cost of key application parameter

1 Future work:
» Include other particle-mapping algorithms in DWG
» E.g. Dynamical load-balancing*
» Synthetic trace generation
> Alleviate trace-collection bottleneck by generating large-scale trace from a
low-resolution run

> Saves trace-collection time and file-size

* Zhai, Keke, et al. "Dynamic load balancing for compressible multiphase turbulence.” Proceedings of the 2018
International Conference on Supercomputing. 2018.

28

Do you have any
questions?

