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Motivation
❑ Performance prediction is critical in 

order to identify performance 

bottlenecks on large-scale systems

➢ Cycle-accurate simulations infeasible 

owing to system complexity

➢ Analytical performance modeling 

approaches useful to generate faster 

performance predictions

❑ Most applications employ static 

workload distribution when scaling 

on large-scale systems

➢ Some applications generate dynamic 

workload during execution e.g. MP-

PIC – thereby making it harder to 

predict performance

❑ Need an accurate, scalable prediction framework for such irregular applications

Particle distribution Heatmap on 4096 processors
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Multi-Phase Particle-In-Cell(MP PIC)
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❑ Multi-phase PIC:

➢ Used to model fluid-particle and particle-

particle interaction in CFD applications 

➢ Eulerian frame of reference for fluid phase

➢ Lagrangian frame of reference for particle 

phase

❑ Applications:

➢ Cyclone simulation

➢ Fluidized bed reactors

➢ Chemical looping combustion
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MP-PIC: Particle solver loop

❑ Key stages of operations

➢ Particle-pusher: Updating particle location based on the change in position

➢ Interpolation: Interpolate eulerian (fluid) properties from the grid-points on to 

the lagrangian particle

➢ Equation solver: Calculate the lagrangian properties at each individual 

particle location

➢ Projection: Project back lagrangian properties back to eulerian grid.

| 5

Particle-

pusher

Equation

-solver

InterpolationProjection



CCMT

MP-PIC: Computation workload
❑ Computational workload is 

categorized into:

❑ Element workload (# of spectral 

elements/processor) – static

➢ Remains fixed upon initial domain 

decomposition

❑ Particle workload (# of 

particles/processor) - dynamic:

➢ Varies among processors:

depends on problem and mapping 

algorithm

➢ Varies during simulation:

depends on particle velocity 

(problem-dependent)

❑ Difficult to predict performance 

cost due to dynamic workload 

variation

❑ Particle workload is a significant 

parameter affecting application 

performance
➢ Particle pusher O(Np)
➢ Interpolation O(Np+Ng)
➢ Projection O(Np+Ng)
➢ Collision forces O(Np2+Np*Ng)

Np – real particles ; Ng – ghost particles
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Processor 2 Processor 3

Processor # of 

elements

# of 

particles

0 4 4

1 4 1

2 4 4

3 4 0

❑Particle workload(# of  particles/processor) is dynamic:

➢Varies among processors: depends on 

problem and mapping algorithm

MP PIC: Particle workload
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❑Particle workload(# of  particles/processor) is dynamic:

MP PIC: Particle workload

➢Varies during runtime: depends on particle 

velocity (problem-dependent)
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Approach
❑ Problem:

➢ Performance Prediction of 

MP-PIC applications is 

difficult owing to dynamic 

workload fluctuations

❑ Solution:
➢ Trace-driven performance 

prediction framework that:

➢ generates dynamic 

workload on a target 

system using application 

trace

➢ Provides a fast modelling 

and simulation platform to 

predict application 

performance
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❑ Goal: 
➢ Accurately predict the particle workload 

on each processor during the simulation

❑ Principle:
➢ Particle decomposition algorithm relies on 

particle location to map particles onto 

processor

➢ Particle location is independent on system 

configuration – problem dependent

➢ Hence single application trace is sufficient 

to predict particle workload on any system 

configuration

❑ Dynamic Workload Generator:
➢ Generate the particle workload per 

processor by mimicking the particle-

mapping algorithm on the input particle 

trace

Dynamic Workload Generator (DWG)
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❑ Input: 
➢ Configuration file:

➢ Application configuration: 

Particle count, mapping 

algorithm

➢ System configuration: 

Processor count

➢ Trace file:

➢ Particle location sampled at 

fixed intervals across execution 

❑ Output:
➢ Computation matrix

➢ Specifying total particles per 

processor at a given iteration

➢ Communication matrix:

➢ Number of particles crossing 

processor domain between 

consecutive sample intervals

Dynamic Workload Generator (DWG)
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❑ Computation Load Generator: 
➢ Calculate processor owning the 

particle by mimicking the mapping 

algorithm  

➢ Increment the particle counter for the 

corresponding processor

➢ Repeat across all the sampling 

intervals 

❑ Communication Load Generator:
➢ Check if the owner (processor) of 

particle same across two consecutive 

sampling intervals 

➢ If not, increment the send counter of 

the previous owner and receive 

counter of the current owner for the 

given sampling interval

Dynamic Workload Generator (DWG)
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Dynamic Workload Generator: Workflow

Particle trace

Configuration file

Input

Application 

trace

Dynamic Workload 

Generator

Particle 

workload

Output

Computation cost Communication cost
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❑ Model Generation: 
➢ Empirical modelling approach to generate 

analytic performance models

➢ Framework supports multiple regression 

methods – linear regression, symbolic 

regression

➢ Linear regression – efficient for single, two 

parameter models

➢ Symbolic regression1 – to generate fast and 

accurate multi-parameter models 

❑ Simulation Platform:
➢ Input: Dynamic workload, performance 

models, system configuration

➢ Output: Predicted Application time

➢ Simulator: BE-SST2

➢ Currently, does not support trace-driven 

simulation

Modeling and Simulation

1 Chenna, Sai P., Greg Stitt, and Herman Lam. "Multi-

Parameter Performance Modeling using Symbolic 

Regression." 2019 International Conference on High 

Performance Computing & Simulation (HPCS). IEEE, 

2019.

2 Ramaswamy, Ajay, et al. "Scalable behavioral 

emulation of extreme-scale systems using structural 

simulation toolkit." Proceedings of the 47th International 

Conference on Parallel Processing. 2018
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❑ Advantages: 
➢ Scalability Prediction:

➢ Identify scalability bottlenecks

➢ Evaluate optimal processor count for large-

scale PIC simulation

➢ Algorithm evaluation:
➢ Platform to evaluate multiple particle 

decomposition algorithms

➢ Low-cost implementation provides quick 

“proof of concept” 

➢ Parameter tuning:
➢ Tune application parameters based on their 

impact on performance

❑ Limitations:
➢ Trace collection:

➢ Difficult for large-scale runs – expensive & 

often infeasible

➢ Trace files are huge – usually 10-100GB
➢ File-size ∝ (# of particles * sampling-

frequency)

Advantages & Limitations
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Application: CMT-nek (particle-solver)
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▪ HPC application, Center for Compressible Multiphase Turbulence 

University of Florida

– Proposed solver of compressible 

Navier-stokes equation for 

compressible multiphase flows

Architecture: Quartz @ LLNL
– Intel Xeon E5 (Broadwell)
– 36 cores/node, 3018 nodes, 108k 

cores
– 128GB memory/node
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❑ Standard particle decomposition 

technique

❑ Assigns particle to processor which 

owns corresponding element

❑ Pros:

➢ Tight particle-grid interaction

➢ Many operations are local to 

each rank

❑ Cons:

➢ Load/memory imbalance

Particle Decomposition: Element-based
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# of 
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❑ Decoupling particle-fluid for better 

scalability

❑ Each particle is stored with nearby 

particles in a bin-structure

❑ Pros:

➢ Good load/memory balance

➢ Better scalability

❑ Cons:

➢ Increased inter-processor 

communication at every 

iteration

➢ Additional computational 

overhead – bin calculation

Particle Decomposition: Bin-based*

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Processor 0 Processor 1

Processor 2 Processor 3

Processor # of 

elements

# of 

particles

0 4 3

1 4 2

2 4 2

3 4 2

* Zwick, David. "ppiclF: a parallel particle-in-cell library in Fortran." Journal of Open Source

Software 4.37 (2019): 1400.
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❑Case-study: Hele-shaw simulation

❑Particles: 599,257

❑Elements: 216,225

❑Grid-size: 4

❑Trace sampling frequency: 100

Case-study: Hele-shaw simulation*

* R. B. Koneru et al., “A numerical study of particle jetting in a dense particle bed driven by an 

air-blast,” Physics of Fluids, vol. 32, no. 9, p.093301, 2020.
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❑Setup:
➢ Particle decomposition: Bin-

based mapping

➢ Processor count: 1044, 2088, 

4176, 8352

Results: Scalability prediction
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Peak particles per processor 

1044 cores 2088 cores 4176 cores 8352 cores

❑Observations:
➢ Peak particle-workload did not improve 

from 2088 processors

➢ Maximum number of  particle-bins 

generated – 1104

➢ Increasing processor count beyond 1104 

wouldn’t scale particle workload

| 22



CCMT

❑Setup:
➢ Particle decomposition: Bin-

based mapping

➢ Processor count: 1044, 2088, 

4176, 8352

Results: Scalability prediction

❑Observations:
➢ Performance prediction of  key particle-

solver kernels

➢ Average MAPE error – 8.42%
➢ Peak MAPE error – 17.7%
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❑Setup:
➢ Particle decomposition: 

Bin-based mapping, 

element-based mapping

➢ Processor count: 1044, 

2088, 4176, 8352

Results: Algorithm evaluation

❑Observations:
➢ Bin-based mapping has better particle 

workload distribution

➢ Couple of  orders magnitude improvement 

in peak particle workload
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❑Setup:
➢ Particle decomposition: 

Bin-based mapping, 

element-based mapping

➢ Processor count: 1044, 

2088, 4176, 8352

Results: Algorithm evaluation

❑Observations:
➢ Resource Utilization(RU*) is poor in case 

of  element-based mapping for Hele-shaw 

case-study

➢ RU worsens for bin-based mapping when 

increasing processor count beyond 1044
➢ Ideal processor count: 1104
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❑Projection filter:
➢ Defines particle zone of  

influence on neighboring grid-

points

➢ Filter size has an impact on 

performance:

➢ Determines number of  

ghost particles per processor 

(Ng) – particle workload
➢ Determines Number of  

particle bins – scaling 
threshold

➢ Identifying performance cost is 

crucial to evaluate accuracy vs 
cost trade-off

Results: Parameter Tuning

Image courtesy: https://www.researchgate.net/figure/Schematic-representation-of-the-interpolation-operator-in-Eq-14-The-gray-

circle_fig1_320796615
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❑Projection filter:
➢ Defines particle zone of  

influence on neighboring 

grid-points

➢ Has an impact on 

performance:

➢ Determines number of  

ghost particles per 

processor (Ng) – particle 
workload

➢ Determines Number of  

particle bins – scaling 
threshold

➢ Identifying performance cost 

is crucial to evaluate 

accuracy vs cost trade-off

Results: Parameter Tuning

❑Observations:
➢ create_ghost_particles – kernel 

generating the ghost particles per 

processor

➢ Number of  ghost particles increase 

with filter size
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Conclusion & Going Forward
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❑ Performance Modeling of  MP-PIC applications on Large-scale systems is 

difficult
➢ Dynamic workload fluctuation due to non-homogenous particle distribution

❑ Presented a performance prediction framework:
➢ DWG for a problem simulation on any target system

➢ Modelling and simulation platform for faster performance predictions

❑ Demonstrated our prediction framework on MP-PIC application (CMT-nek):
➢ Scalability prediction – identified optimal processor count for particle workload 

distribution

➢ Algorithm evaluation – Bin-based mapping provides better particle workload 

distribution

➢ Performance tuning – quantified performance cost of  key application parameter

❑ Future work:
➢ Include other particle-mapping algorithms in DWG

➢ E.g. Dynamical load-balancing*

➢ Synthetic trace generation

➢ Alleviate trace-collection bottleneck by generating large-scale trace from a 

low-resolution run

➢ Saves trace-collection time and file-size
* Zhai, Keke, et al. "Dynamic load balancing for compressible multiphase turbulence." Proceedings of the 2018 

International Conference on Supercomputing. 2018.
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Do you have any 
questions?


