
QuaLM: Learning 
Quantitative 

Performance of 
Latency-Sensitive Code

Presenter: Arun V Sathanur
Senior Scientist, Data Sciences,

Pacific Northwest National Laboratory  (PNNL)

IWAPT 2022, 06/03/2022

Co-authors: 

Nathan Tallent (PNNL), 

Patrick Konsor, Ken Koyanagi, Ryan Mclaughlin (Intel) 

Joseph Olivas, Michael Chynoweth (Intel)



2

Introduction
• Diagnosing bottlenecks in CPUs and hence optimizing applications for a given 

microarchitecture is becoming increasingly challenging

• Good predictive models can lead to more effective performance introspection 
§ Better JIT and runtime decisions 
§ Informed application steering

• In this work we consider the problem of learning to predict the performance of 
an application on Intel Skylake CPU and other emerging architectures 
§ Resolution: dynamic superblock (dynamic instructions between two branches)
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Related work
• Best current methods are based on top-down analysis and cycle accounting [1]. Useful but,

§ Time-consuming for human to construct
§ Possibly misleading: assumes penalties do not overlap – may be false

• Recent approaches in this direction include deep neural network models such as Long 
Short-Term Memory (LSTM) units [2] and Graph Neural Networks (GNN) [3].

• Unrealistic assumptions:
§ Throughput performance (best case instruction parallelism) [2]
§ Data is L1-resident (fastest cache) [2] or data layout is irrelevant [3]
§ Ignores pipeline stalls/hazards (TLB walks, store blocking, memory fences) [2,3]
§ Basic block only [2]

[1] Yasin A. A top-down method for performance analysis and counters architecture. In2014 IEEE International Symposium on 
Performance Analysis of Systems and Software (ISPASS) 2014
[2] Mendis C, Renda A, Amarasinghe S, Carbin M. Ithemal: Accurate, portable and fast basic block throughput estimation using deep 
neural networks. ICML 2019
[3] Shi Z, Swersky K, Tarlow D, Ranganathan P, Hashemi M. Learning Execution through Neural Code Fusion. ICLR, 2020
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Our approach and contributions

• Learn bottlenecks through combination static and dynamic sources. 
• Static features (MCA): static dependencies, instruction scheduling limitations

§ LLVM Machine Code Analyzer 

• Dynamic features (PMU): execution stalls/penalties via perf. monitoring units 
§ Leverage precise timings of super-block execution (new feature on Intel PMUs)

• Modeling lessons for performance-based data sets
§ wide variability and heavy tails

• Compare against predictions from the state-of-the-art top-down methodology
• Open-source implementation of QuaLM’s modeling pipeline

https://gitlab.pnnl.gov/perf-lab/qualm
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Model description

Classification Boundary 
Bottleneck = 0/1

A 2-stage model combining a 
classifier and a regression model

Classifier and Regressor can be 
implemented by any model

Current implementations comprise 
Linear Models, Ensemble Decision 
Trees, and Fully Connected Neural 
Networks

We predict both Mean CPI and 
Extra CPI;
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Model Performance

TD predictor: linear combination of events

TD.Shallow: R2 of 0.39 (Large-Multiple)
TD.Deep: R2 of 0.37 (Large-Multiple)

Datasets Best Model R2 RMSE

Sm - Uniq RF / XGB 0.70 0.71

Lg - Uniq RF / RF 0.66 2.50

Lg - Mult XGB /XGB 0.84 1.79

• Ensemble Decision Trees perform better than linear models and deep learning models
• Significantly improve prediction accuracy vs. state-of-the-art Top Down (TD) modeling

[1] Yasin A. A top-down method for performance analysis and counters architecture. In2014 IEEE International Symposium on 
Performance Analysis of Systems and Software (ISPASS) 2014

Top-down methodology from [1]
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Dataset description
• End-user commercial apps: latency-sensitive

§ web browsers, word processors, spreadsheets, audio/video, development environment

• Two methods: Benchmark suites, Long term (6 months)
• Three different data sets:

§ Small-Unique: Benchmark method. Each superblock has ≥1000 LBR samples for very 
high-quality data.

§ Large-Unique: Long-term method. Each superblock has ≥100 samples.
§ Large-Multi: Long-term method. Same method as Lg-Uniq, except that superblock 

data is retained as distinct over all collection windows.
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Statistical description of the data
Basic stats for Extra CPI and Mean CPI

Distribution viz. for Extra CPI Understanding the variability
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Feature descriptions
• Dynamic (‘PMU’) vs static (‘MCA’) features: actual vs best-case execution behavior

• Dynamic features critical for capturing microarchitectural behavior throughout the core, 
uncore, and memory system that characterize latency sensitive execution.
§ Pruned features (expert knowledge): identified 23 ‘most predictive’ of performance

ü frontend, speculation, backend, and retiring bottlenecks
§ Independent selections by two analysts disagreed by only two metrics

• Static features use LLVM-MCA, a static analyzer, that models throughput performance of 
basic blocks at the instruction level. Convert MCA reports into metrics that decompose 
each superblock’s execution, like cycle accounting.
§ CPI (min and expected), CPI waiting for data (min and expected)
§ A total of 21 MCA features are incorporated in the modeling pipeline
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Feature correlations
• Used Pearson correlation coefficient between the target (X.CPI) and the features
• Top-10 features (out of 44) were consistently replicated across the three datasets.
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Lessons learnt from single stage models
• Single stage models with PMU events only resulted in low prediction accuracy
• Next, we separated the superblocks into non-bottleneck (B=0) and bottleneck (B=1) 

categories via thresholding
• Adding MCA features help improve the performance of the models for the severe 

bottleneck case noticeably
• Although the large datasets have more ‘noise’ (less environmental control) than the small 

one, the models are able to learn better
• Of all tested methods, ensemble decision tree-based models, especially the random forest 

and the XGBoost models performed the best
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Considerations with staged classification-regression

• Being able to do good predictions on more 
severe bottlenecks is useful

• This also means we need to develop a 
classification model that’ll predict whether a 
superblock constitutes a severe bottleneck or not

• Thus, we need a pre-regression classification 
stage with good performance

• Overall model can be written as:

• Note the differences with a traditional piece-wise 
model. C(X) provides the boundary in this case.

Mis-classifications (false positives and false 
negatives) will result in using the wrong 
regression model thereby reducing the accuracy. 

Since we are predicting the target values for the 
severe bottlenecks only (shaded area in the 
figure), false negatives won’t have a quantitative 
prediction associated with them.
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Optimizing the multi-stage model
• As a direct consequence of the no-free-lunch theorem, the final prediction pipeline must 

have a composite model that is optimized jointly. 
• Thus, for each of the datasets, we explore all possible classifier- regressor combinations to 

find the optimal assignments.

• Used two training strategies. 
§ S1 consists of splitting the available training data into training and validation sets for each stage. 
§ S2 uses all the available training data for training and validation steps of both stages. 

• The second strategy turns out to be a better one due to two reasons.
§ The individual classifiers and regressors learn better due to more data being available
§ The classifier is able to pre-select superblocks which can be better modeled by the bottleneck regression 

model

• The B=0/1 threshold is essentially a hyperparameter. Optimal value was found to be the 
70th percentile
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Performance of the multi-stage model

• Best model R2 values achieved by the 
combined pipeline are shown in the table.

Dataset Extra CPI Mean CPI
Sm-Uniq 0.7 0.6
Lg-Uniq 0.66 0.71
Lg-Multi 0.84 0.87

• Error metric 𝜖 is defined as the median relative error
• Comparison of the error metric for different prediction 

methods is shown below
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Conclusions and future work
• Conclusions

§ Combination of dynamic PMU features and static features can provide good 
predictions of the real-world superblock CPI measures when combined with ML 
models 

§ These ML models turn out to be ensemble decision trees that include random forests 
and gradient boosted decision trees

§ Regime of interest (most severe bottlenecks) is best modeled by a composite 
classifier-regression

• Future work
§ Extending our predictions to accurate bottleneck quantification, like top-down cycle 

accounting. 
§ Improve modeling accuracy by exploring other classes of composite models, and 

strategies for end-to-end training.


