
Smoothing on
Dynamic Concurrency Throttling

1

Janaína Schwarzrock1, Hiago Mayk G. de A. Rocha1,

Arthur F. Lorenzon2, Antonio Carlos S. Beck1

1 Federal University of Rio Grande do Sul (UFRGS), Brazil
2 Federal University of Pampa, Brazil

Seventeenth International Workshop on Automatic Performance Tuning (iWAPT2022)

Outline

• Introduction

• Motivation

• Smoothing on DCT

• Experimental Setup

• Evaluation

• Final consideration

2

Outline

• Introduction

• Motivation

• Smoothing on DCT

• Experimental Setup

• Evaluation

• Final consideration

3

0.00

0.20

0.40

0.60

0.80

1.00

1 2 4 6 8 10 12 14 16 18 20 22 24

Exec. Time

Energy

Parallel applications scalability

4

• Some applications do not scale as
the number of threads increase

Execution Time

Energy consumption

Performance or Energy?

Energy-Delay Product (EDP)
EDP = Energy consumption * Execution Time

Number of threads

SP from NAS Parallel benchmark in
X86 with 24 virtual cores

Lower is
better

Different parallel regions of an application

• Usually, a parallel application has more than one parallel region

• Each parallel region may exhibit different behavior

5

execution timeline

Compute-intensive Memory-intensive

They may have a different optimal number of threads

Execution timelineSearch phase: During execution

24 24 24 6 6 6 10

Stable phase

Execution timeline

12 12 12 12 1212 12 12 12 12 12

t* = 12

Offline

Tuning thread count approaches

6

Execution of parallel regions

Search phase:
Before
execution

Online

Static

Dynamic

Execution timeline

12 12 6 8 126 8 12 6 8 12

Dynamic

It lacks
adaptability

It can adapt to any
changes at run-time

Stable phase

t1* t2* t3* t1*

B = (t1*, ..., tk*)

B = (12, 6, 8)

Search phase:
Before
execution

Execution timelineSearch phase: During execution

24 24 24 6 6 6 10

Stable phase

Execution timeline

12 12 12 12 1212 12 12 12 12 12

t* = 12

Offline

Tuning thread count approaches

7

Search phase:
Before
execution

Online

Static

Dynamic

Execution timeline

12 12 6 8 126 8 12 6 8 12

Dynamic

It lacks
adaptability

It can adapt to any
changes at run-time

Stable phase

t1* t2* t3* t1*

B = (t1*, ..., tk*)

B = (12, 6, 8)

Search phase:
Before
execution

Pusukuri et al. (2011);
De Sensi (2016)

Wang et al. (2016);
Popov et al. (2019)

Lee et al. (2010); Chadha et al. (2012); Suleman et al. (2008); Curtis-
Maury et al. (2006,2008); Li et al. (2010); Sridharan et al. (2014); De
Sensi et al. (2016); Li and Martinez et al. (2006); Alessi et al. (2015);

Lorenzon et al. (2018); Schwarzrock et al. (2020)

Execution timelineSearch phase: During execution

24 24 24 6 6 6 10

Stable phase

Execution timeline

12 12 12 12 1212 12 12 12 12 12

t* = 12

Offline

Tuning thread count approaches

8

Search phase:
Before
execution

Online

Static

Dynamic

Execution timeline

12 12 6 8 126 8 12 6 8 12

Dynamic

Stable phase

t1* t2* t3* t1*

B = (t1*, ..., tk*)

B = (12, 6, 8)

Search phase:
Before
execution

O (n)

O (nk)

O (n) + O (n) + O (n)

→ unfeasible

B = Best-effort dynamic
solution

Upper-bound
a single thread count that

optimizes the whole application

An optimized thread count for
each parallel region individually

a set that optimizes
the whole application

Outline

• Introduction

• Experimental Setup

• Motivation

• Smoothing on DCT

• Evaluation

• Final consideration

9

Motivation

10

Platform A

Platform B

Baseline
(the default execution):
Execution with the maximum
number of threads

Offline learning to get results
with no learning overhead

Parallel applications

Parallel applications

Motivation

11

Platform A

Platform B

Dynamic solution is
the best one

The dynamic solution is
far from the best one

Motivation

12

BT on machine A

MG on machine B

Dynamic solution is
the best one

The dynamic solution is
far from the best one

When the thread count changes very often,
the benefit of using the best configuration for
each parallel region may not compensate for

the switching cost

Creating/destroying/migrating threads;
data warm-up (memory caches warm-up, TLB misses)

Our proposal: smoothing thread count changes

13

MG on machine B

We propose a smoothing-
based strategy to minimize the

thread count changes

• It alleviates the switching overheads.

• Our proposal is generic and aims further
to improve the optimization results of
any DCT technique (offline and online).

Outline

• Introduction

• Experimental Setup

• Motivation

• Smoothing on DCT

• Evaluation

• Final consideration

14

15

25ms 25ms 5ms 25ms 25ms 5msExec. time:

r1 r2 r3 r1 r2 r3

B = (08, 24, 12)

08 24 12 08 24 12
Parallel
region

Best
#threads

r1 08

r2 24

r3 12

Time series of thread count

Weighted Moving Average (WMA) a lightweight and powerful
smoothing technique

16

25ms 25ms 5ms 25ms 25ms 5msExec. time:

r1 r2 r3 r1 r2 r3

08 24 12 08 24 12

Time series of thread count

Weighted Moving Average (WMA) a lightweight and powerful
smoothing technique

E = (25, 25, 5, 25, 25, 5)

Y = (08, 24, 12, 08, 24, 12)

The time series (thread count):

The weights (exec. time):

Index best
#threads Time

Round to 6
Index 6 = 12 threads

W

7

6

5

4

3

2

1

Index

Y = (08, 24, 12, 08, 24, 12)

points:

Y = (04, 07, 06, 04, 07, 06)

W = 50 ms

i-1 i

8 12

Outline

• Introduction

• Motivation

• Smoothing on DCT

• Experimental Setup

• Evaluation

• Final consideration

18

Execution Environment

19

Machine A B

Processor Intel Xeon E5-2630 (Sandy Bridge) 2.3GHz Intel Xeon E5-2699v4 (Broadwell) 2.2 GHz

#Sockets (#nodes) 2 2

#Cores per socket 6 (2-way SMT) 22 (2-way SMT)

#Threads total 24 88

L1 cache (private) 12 x 32KB 44 x 32KB

L2 cache (private) 12 x 256KB 44 x 256KB

L3 cache (shared) 2 x 15MB 2 x 55MB

RAM Memory 2 x 16GB 2 x 128GB

• OS Linux kernel v. 4.19.0.

Thread count search space:
Machine A: 2, 4, 6, 8, 10, 12 and 24

Machine B: 2, 4, 6, 8, .., 44 and 88

physical cores (only even numbers)
the maximum

number of threads

Benchmarks

• 9 OpenMP Parallel Applications written in C/C++:

Six kernels from the NAS Parallel Benchmark:

• BT, CG, FT, LU, MG, and SP

Three applications from different domains:

• Fast Fourier Transform (FFT);

• Jacobi (JA);

• Poisson (PO).

• GCC version 8.3 (OpenMP 4.5) with –O3

20

Benchmark Input

BT Class B

CG Class B

FT Class C

LU Class B

MG Class B

SP Class B

FFT Array of 10000 elements

JA Square matrix of 8192

PO Square matrix of 768

Outline

• Introduction

• Experimental Setup

• Motivation

• Smoothing on DCT

• Evaluation

• Final consideration

21

22

Smoothing

B

Learning a dynamic
solution B

Run the application with the Smoothed time series

Execution timeline

y1 y2 y3 ym-2 ym-1 ym

offline

B

Learning a dynamic
solution B

offline Run the application and smooth B during execution

Execution timeline

y1 y2 y3 ym-2 ym-1 ym

Smoothing

Execution timeline

Online learning phase

24 24 24 6 6 6 10 t1* t2* t3* t1*

B = (t1*, ..., tk*)

Smoothing

a) Evaluate the effectiveness of the smoothing technique (without online cost):

b) Evaluate the
online smoothing
overhead

c) Evaluate the online smoothing into a DCT online learning technique

a) the effectiveness of the smoothing technique

23

Platform B
(88 hw threads)

Platform A
(24 hw threads)

It improves B’ results

EDP optimization near
the upper-bound

93%
89%

b) the online smoothing overhead

24

Platform B
(88 hw threads)

Platform A
(24 hw threads)

Our online smoothing
technique has
low overhead

c) Smoothing into a DCT online learning technique

• Online learning DCT technique

• Hoder [1]

25

Execution timeline

Search phase

24 24 24 6 6 6 10

Stable phaseStable phase

t1* t2* t3* t1*

B = (t1*, ..., tk*)

Fibonacci based algorithm

Smoothing

[1] J. Schwarzrock, C. C. de Oliveira, M. Ritt, A. F. Lorenzon, and A. C. S. Beck, “A runtime and non-intrusive approach to optimize edp by tuning threads
and cpu frequency for openmp applications,” IEEE TPDS, vol. 32, no. 7, pp. 1713–1724, 2020

c) Smoothing into a DCT online learning technique

26

Platform B
(88 hw threads)

Platform A
(24 hw threads)

large thread count
search space

50%

Outline

• Introduction

• Motivation

• Smoothing on DCT

• Experimental Setup

• Evaluation

• Final consideration

27

Final consideration

• A smoothing-based strategy to further improve the optimization results of any DCT
technique

• Our strategy smooths the thread count changes alleviating the switching
overheads, which is generated by DCT when changing the number of threads
during application execution

• Experiments on two multicore systems with nine well-known benchmarks show
that our smoothing technique improves EDP results of offline and online state-of-
the-art DCT techniques by up to 93% and 89% (overall mean of 22%), respectively.

28

29

Thanks for your attention!
Questions?

Smoothing on Dynamic Concurrency Throttling

Janaína Schwarzrock1, Hiago Mayk G. de A. Rocha1,

Arthur F. Lorenzon2, Antonio Carlos S. Beck1

1 Federal University of Rio Grande do Sul (UFRGS), Brazil
2 Federal University of Pampa, Brazil

jschwarzrock@inf.ufrgs.br

