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Background

» Automatic Software Performance Tuning (Auto-Tuning, AT)

« Automatically tuning Performance Knobs of a code for its target platform

« Performance knob: parameter of a code affecting the performance
e.g., selecting one of multiple code versions for a platform.

* Build Configuration = a set of important performance knobs
» There are many options to compile a code, e.g., compiler and its option flags.

» Various kinds of code optimizations are incorporated into each compiler and enabled by
compiler option flags.

* Different compilers provide different optimizations and thus different option flags.

- A compiler and its option flags must be selected properly.
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Compilers and their flags

» Speedup from “gcc —0O2" configuration
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Motivation

* A code could potentially have a huge number of build configurations
 There is no explicit algorithm to find an appropriate build configuration.
* Full search for finding the best is time-consuming and could be infeasible.

» Research Questions
e Is it technically feasible to automatically find the best build configuration?
* From what data, can we predict the best configuration most accurately?
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This Work

 Characterizing a code for identifying an appropriate build configuration.
* Performance Monitoring Counters (PMC)

 What we have done in this work

« Machine learning models are used for the best build configuration prediction.
* Predicting the performance with each build configuration.

* Feature selection to eliminate redundant PMC attributes for inference
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Related Work

e Logistic Regression of PMC values (Cavazos et al, 2007)

 The feasibility of automatically finding an appropriate set of compiler option
flags is demonstrated.

« All available PMC attributes are used for regression.
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Overview of Build Configuration Prediction
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Performance Monitoring Counters

 There are a large number of PMCs available on modern processors.
 Performance information obtained at runtime (=dynamic information)
* Available PMC attributes are microarchitecture-dependent ®
* PMC values are compiler-dependent ®

. TOT_INS Total number of instructions
* In this work, PMC values are measured ¢ s Number of load and store
with gcc —O0 (no optimization) instructions
 Compiler optimization could change the ~ TOT-¢YC Total number of cycles
statistics of PMC values. SP_OPS Numbgr of floating-point
operations
L2_TCM Number of L2 cache misses
BR_INS Number of branch instructions
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Feature Selection

* Use commonly available PMC attributes across various processors

* Exclude invalid or less useful attributes
* E.g. some attributes are not affected by build configurations and always constant

* Filter out highly correlated attributes
* Check if the correlation between two attributes exceeds a threshold.
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Feature Selection (cont'd)

* Many PMC values are highly correlated (= multicollinearity)
» thus expressing identical performance characteristics.

« ML model can learn better from weakly correlated inputs (Alin, 2010).
- If two PMC values are highly correlated, only one of them is used for ML.

Correlation diagram between PMC attributes

A brighter color means a higher correlation, and
many PMC attributes are highly correlated.

Are all PMCs important for characterizing a code?
Probably not (experimentally discussed later).
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Z-Score Standardization

« PMC attributes have totally different statistics

« The average values of data cache misses and instruction cache misses are
in the orders of 10° and 10°, respectively.
- Significant differences would lead to information loss at training.
* In this work, we apply data-scaling and standardization to PMC values.

» Each value is normalized by TOT_INS (total number of instructions),
and then Z-score standardization is applied.

where X and s are the average and standard deviation of x;.
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Machine Learning Model
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Evaluation Setup

* Build Configurations
e gcc -02, gcc -03

—_

*1cc -02, 1cc -03 —  Compilation for x86 processors with -march=native option
 clang -02, clang -03

* ncc -02, ncc -03, ncc -04

* Benchmark

e Test Suite for Vectorization Compilers 2 (TSVC 2)

* 151 vectorizable loops are provided

1,447 loops are generated by changing their loop lengths.
* 1D loop length : 100 ~ 512,000
« 2D loop length: 8~ 2,048 (nested)

 Performance Application Programming Interface (PAPI)
« PMC values and execution time are obtained at different runs

Compilation for NEC Vector Engine
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Evaluation Setup

System A

e

oMC gcc/icc/aocc System C
CPU Intel Core i7 9700K AMD EPYC 7402P  AMD EPYC 7702
VE NEC VE Type 20B
Memory 32 GB 256 GB 256 GB
Linux Kernel 5.11.0 4.18.0 4.18.0
Compiler gcc-9.3.0 ncc-3.3.0 gcc-8.4.1

icc-2021.3.0
aocc clang-12.0

berscience



Evaluation Metric 1

 PWGA (Penalty-Weighted Geometric Accuracy)
N

Tes L
PWGA = (J] )~

1—1 Tp'r'ed,l

* N: Number of data
* Tyest 1 Execution time of the [ —th code with the best config.

* Tprea, - Execution time of the [ -th code with the predicted config.

PWGA = 1 for perfect prediction.

PWGA becomes smaller if performance with the predicted config is
ower than that with the best config.
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Evaluation Metric 2
* Speedup Ratio

Tbaseline,l
T,

Speedup Ratio(l) =

* T, ;: Execution Time of the [-th code with a configuration

* Tyaseline 1 Execution Time of the [-th code with gcc -0O2.
(baseline)
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Evaluation Results in PWGA

All loops 1-d loops 2-d loops
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* ncc —0O3: always use ncc —O3 for any loop
* logi : logistic regression (existing work)

1-D: ncc -03 is almost always best for 1d loops (= long loops).
2-D: proposed approach can select better ones for more 2d loops.
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Effect of Feature Selection

* Feature selection improves the prediction accuracy (PWGA) of
not only NN but also logistic regression.
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Machine Learning Models

* RF: Random Forest
00 * SVM: Support Vector Machine

* KNN: k Nearest Neighbor
* ncc —O3: always use ncc —O3
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Speedup by Changing Build Configuration
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1 Vectorizable but very slow on VE.
The proposed approach can predict it.
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Figure 9: Speedup ratios of each build configuration on a Figure 10: Speedup ratios of each build configuration on a
len1d loop (8352 in TSVC 2 with the loop length of 31,039). len2d loop (s231 in TSVC 2 with the loop length of 87).

e (Left) ncc is selected and the speedup ratio is about 19
* (Right) gcc is selected, and the speedup ratio is about 19.
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Conclusions

* Build configuration selection
« Compiler and its option flags can significantly affect the performance
* The best configuration for each code could be different

* PMC-based approach
* PMC values could be used to predict the best build configuration

« Many of PMC attributes are highly correlated and feature selection to reduce
the redundancy could improve the prediction accuracy.

* Evaluation results with TSVC-2

 1-dimensional vectorizable long loops = “ncc —O3" works best
 2-dimensional nested loops = the proposed approach works better than others.
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