Analyzing Search Techniques for Autotuning Image-based GPU Kernels: The Impact of Sample Sizes

Jacob O. Tørring, Anne C. Elster

Department of Computer Science

Norwegian University of Science and Technology (NTNU)

Motivation

- Heterogeneous systems: GPUs
- Optimizing portable GPU code
- Searching for the optimal configuration
- Limited budget for searching
- Which algorithm to choose, and when?

Contributions

- Comparing metaheuristic optimization algorithms against Bayesian optimization-based search.
 - Bayesian Optimization based on Gaussian Processes
 - Bayesian Optimization based on Tree-Parzen Estimators
 - Genetic Algorithms
- Present tools to make statistically significant comparison
 - Non-parametric significance tests
 - Effect size measures
 - Statistics library
- Comparing related work in autotuning and hyperparameter optimization.

Outline

Motivation and Contributions

Autotuning Search Algorithms

Benchmarks and Comparability

Experimental Setup

Related work

Results and Discussion

Conclusion and Future Work

Search algorithms: direct search

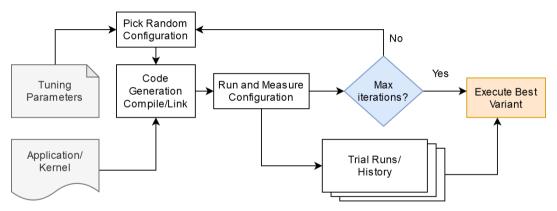


Figure: Pipeline for random search

Search algorithms: model-based search

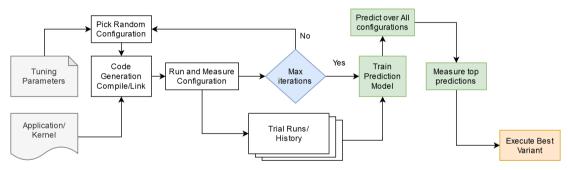


Figure: Pipeline for model-based search

Search algorithms: Sequential Model-based Optimization

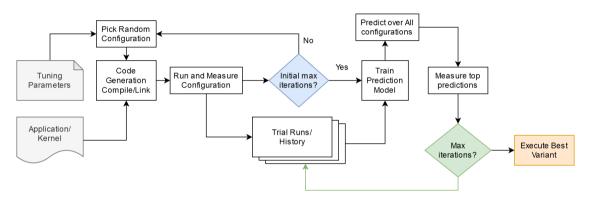


Figure: Pipeline for Sequential Model-Based Optimization

Algorithms used in study

- Direct Search
 - Random Search (RS)
- Model-based search
 - Random Forests (RF)
- Sequential Model-Based Optimization (SMBO)
 - Bayesian Optimization based on Gaussian Processes (BO-GP)
 - Bayesian Optimization based on Tree-Parzen estimators (BO-TPE)
 - Genetic Algorithms (GA)
- Some of the best performing techniques from Autotuning literature¹ and Hyperparameter Optimization literature²

² James S. Bergstra et al. Algorithms for Hyper-Parameter Optimization. In: Advances in Neural Information Processing Systems 24. Ed. by J. Shawe-Taylor et al. Curran Associates, Inc., 2011, pp. 25462554. URL: http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf

¹Ben van Werkhoven. Kernel Tuner: A search-optimizing GPU code auto-tuner. en. In: Future Generation Computer Systems 90 (Jan. 2019), pp. 347358. ISSN: 0167-739X. DOI: 10.1016/j.future.2018.08.004. URL: http://www.sciencedirect.com/science/article/pii/S0167739X18313359

Benchmarks

- ImageCL³: Compiles to OpenCL
- Add benchmark: C = A + B
- Harris benchmark: Corner detection algorithm
- Mandelbrot benchmark: Generating a visualization of the Mandelbrot set.
- Thread dimensions: $\{X, Y, Z\}_t = [1..16]$
- Work group size: $\{X, Y, Z\}_{w} = [1..8]$
- dim(S) = 6, |S| = 2 097 152 configurations.
- Same benchmarks as previous ImageCL-based autotuning studies.

³Thomas L. Falch and Anne C. Elster. ImageCL: An image processing language for performance portability on heterogeneous systems. In: 2016 International Conference on High Performance Computing Simulation (HPCS). July 2016, pp. 562569. DOI: 10.1109/HPCSim.2016.7568385.

Hardware

- Nvidia GTX 980
- Nvidia Titan V
- Nvidia RTX Titan
- Hardware from older to newer generations of hardware to investigate generational difference.

Comparability

- Using significance tests to assess our results
- Most significance tests assume some parameterized distribution of the samples
- E.g. a gaussian/normal-distribution.
- Can we use these techniques for our autotuning studies?

Distribution of samples: Mandelbrot benchmark

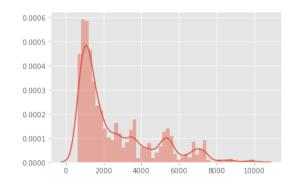


Figure: GTX980 Probability distribution of all samples

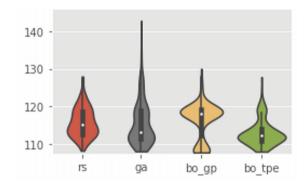
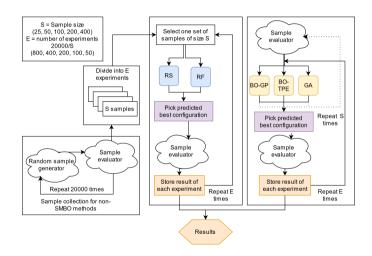


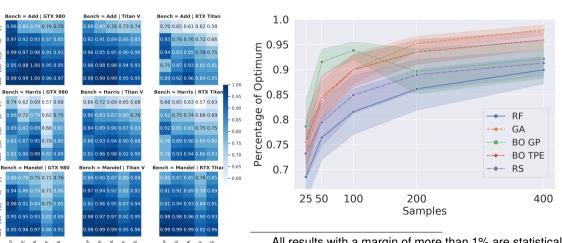
Figure: Titan V Probability distribution of results from algorithms

Non-parametric significance tests


- Population are obviously non-gaussian.
- Cannot be modeled accurately with any distribution from the SciPy statistics package.
- Cannot make any assumptions about the underlying distribution, so we need a non-parametric significance test.
- Bootstrapping would drastically increase the experiment time.
- We propose to use the Mann-Whitney U (MWU)⁴
- Using the Common Language Effect Size: The likelihood of one algorithm outperforming another
- Using the Pingouin library⁵

⁵Raphael Vallat. Pingouin: statistics in Python. In: Journal of Open Source Software 3.31 (Nov. 2018), p. 1026. ISSN: 2475-9066. DOI: 10.21105/joss.01026. URL: http://joss.theoj.org/papers/10.21105/joss.01026

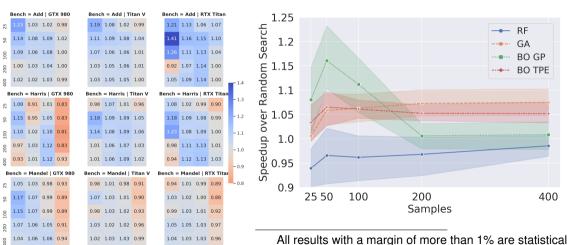
⁴ Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to assess randomized algorithms in software engineering. en. In: Proceeding of the 33rd international conference on Software engineering - ICSE 11. Waikiki, Honolulu, HI, USA: ACM Press, 2011, p. 1. ISBN: 978-1-4503-0445-0. DOI: 10.1145/1985793.1985795. URL: http://portal.acm.org/citation.cfm?doid=1985793.1985795


Autotuning Experiment Structure

Overview of related work

Author	Samples/Experiments/Evaluations ^a	Significance test	Research field	Algorithms
Hutter et al. [10]	30-300 Min / 25 / 1000	Mann-Whitney U	AlgConf	SMAC, ROAR, TB-SPO, GGA(GA)
Eggensperger et al. [21]	Varies ^b (50 to 200) / 10 / n/a	Unpaired t-test	AlgConf	BO TPE, SMAC, Spearmint
Falkner et al. [22]	Varies ^b / Varies / Varies	n/a	AlgConf	RS, BO TPE, BO GP, HB,
				HB-LCNet and BOHB
Snoek et al. [7]	Varies ^b (1-50,1-100) / 100 / n/a	n/a	HypOpt	BO GP, Grid search
Bergstra et al. [8]	230 / 20 / n/a	n/a	HypOpt	RS, BO TPE, BO GP, Manual
Bergstra et al. [23]	1-128 / 256-2 / n/a	n/a	HypOpt	RS, Grid Search(GS)
Bergstra et al. [6]	10-200 / n/a / n/a	n/a	HypOpt	Boosted Regression Trees,
				GS, Hill Climbing
Falch and Elster [5]	100-6000 / 20 / n/a	n/a	Autotuning	NN, SVR, Regression Tree
van Werkhoven [12]	Varies ^b / 32 / 7	n/a	Autotuning	Many Metaheuristic Methods
Willemsen et al.[24]	20-220 / 35 / n/a	n/a	Autotuning	BO, RS, SA, MLS and GA
Ansel et al. [25]	Varies ^b / 30 / n/a	n/a	Autotuning	Multi-armed bandit, Manual
Nugteren et al. [11]	Varies ^b (107 or 117)/ 128 / n/a	n/a	Autotuning	RS, SA, PSO
Akiba et al. [26]	Varies ^c / 30 / n/a	"Paired MWU"	Autotuning	RS, HyperOpt, SMAC3,
				GPyOpt, TPE+CMA-ES
Grebhahn et al. [27]	50, 125 / Unclear ^d / n/a	"Wilcox test"	SBSE	RF, SVR, kNN, CART, KRR, MR
Tørring	25-400 / 800-50 / 10	Mann-Whitney U	Autotuning	RS, BO TPE, BO GP, RF, GA

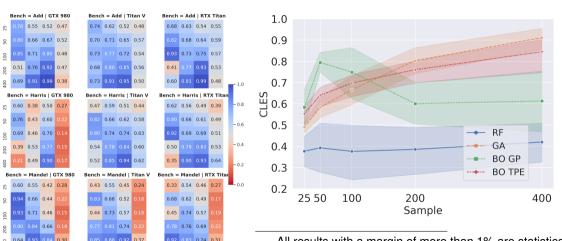
Results: Convergence to optimum performance


All results with a margin of more than 1% are statistically significant under the MWU test with $\alpha = 0.01$.

Results: Median performance

BO GPBO TPE GA RE

BO GPBO TPE GA



All results with a margin of more than 1% are statistically significant under the MWU test with $\alpha = 0.01$.

BO GPBO TPE GA

Results: CLES over Random Search

All results with a margin of more than 1% are statistically significant under the MWU test with $\alpha=0.01$.

BO GPRO TPE GA

BO GPBO TPF GA

BO GPBO TPE GA

Discussion

- Generally BO GP performs the best for lower sample sizes
- Generally GA performs best for higher sample sizes
- Our use of BO GP seems to overfit, indicating that a better implementation of BO might perform better
- Results vary between benchmarks and hardware architectures, but there is a consistent trend
- Our benchmarks all have identical search spaces.
- Limited domain and only Nvidia GPUs

Conclusion and Contributions

- Study on autotuning algorithms for Image-based GPU kernels.
 - Bayesian Optimization based on Gaussian Processes
 - Bayesian Optimization based on Tree-Parzen Estimators
 - Genetic Algorithms
- Presented Non-parametric significance tests and experiment setups which provides statistically significant results.
- Compare related work in autotuning and hyperparameter optimization.

Future work

- Need for
 - more thorough benchmarking guidelines in autotuning.
 - comprehensive and representative benchmarking suites for autotuning⁶.
- Performing new comparative studies with more sophisticated tools and a wider and more representative benchmark suite on a range of hardware configurations.

⁶ Ingunn Sund, Knut A. Kirkhorn, Jacob O. Tørring and Anne C. Elster. BAT: A Benchmark suite for AutoTuners. In: Norwegian ICT-conference for research and education. 1, 2021, pp. 4457

Thank you for listening!

Contact information

Jacob O. Tørring: jacob.torring@ntnu.no
Anne C. Elster: elster@ntnu.no