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Introduction
◼HPC system architectures are getting more complicated

• Automatic optimization by compilers, compiler optimization, is becoming more crucial

◼Compilers perform code optimizations for high-performance
• Various optimization passes are implemented and can be applied automatically

• Sometime applying these passes might even decrease the performance 
depending on the target system and application

◼Compiler needs to select which passes to apply to maximize the performance
• In what order to apply them? / What parameters to use?

• Need to evaluate the candidates of optimization passes
• Execution a huge number of candidates results in long compilation time
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Cost Model for Compiler Optimization
◼Cost models are used to predict the performance improvement 

without running the program
• Machine learning is often used to empirically construct cost models in a data-driven way

• Analytical modeling of a modern complex computing system is infeasible

◼Cost model based on machine learning
• Built from performance data, which are collected 

by running a huge number of programs on the target system
• Time-consuming

• Many cost models based on machine learning is specialized for training system
• Users need to collect performance data in their systems to build their own models
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Overview of the Proposed Method
◼Building a cost model of a target system from as few data as possible

• Adopts transfer learning to build a cost model of the target system from a pre-trained 
cost model, a source model, of another system

• Can build build multiple models from a single source model with fewer data
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The Cost of Building a Training Dataset 
◼A data-driven approach to build a cost model needs a large dataset

◼The cost of building a training dataset is strongly correlated to the number of 
times to run programs on the target system
• A program is defined by its source code and a sequence of optimization passes

• Each sample in training data is a pair of a program and its performance on the target system

• It is potentially possible to improve the prediction accuracy 
by carefully selecting training data with the same number of training data
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Dataset for the Evaluation
◼TenSet [1] : A large-scale dataset to train the cost model for TVM 

• Consists of trained deep neural networks and sequences of optimization passes
• Neural networks are divided into subgraphs called tasks

• TVM compiler optimizes the whole network by applying a sequence of optimization passes called a 
schedule to each task

• Annotated with performance labels on 4 CPU and 2 GPU systems
• 4 CPU systems : Xeon E5-2673, Xeon Platinum 8272, AMD EPYC 7452 and ARM Graviton2

• 2 GPU systems : NVIDIA Tesla T4 and NVIDIA Tesla K80

◼We use DNNs in two ways
• To build a cost model

• A program to be optimized
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Evaluation Metrics
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◼Learning efficiency of transfer learning
# of programs required to reach the baseline performance by transfer learning

# of programs used to train the baseline model
• Not include # of training data used to train the source model in the numerator

◼Prediction accuracy (Pairwise Comparison Accuracy)
• Predicts performance of N programs

• M: # of pairs of which the predicted and 
measured performance values match 

• The cost model with PCA close to 1 will 
be able to select a better optimization pass

Measured execution time

Predicted
execution 
time

PCA = 1
PCA = 5/6

=0.83
PCA = 0



Overview of the Evaluation
◼To achieve higher prediction accuracy with less training data

• Source model selection

• Transfer learning technique

• Training data selection

◼Using the model trained on a small number of data,
optimize the program and evaluate its performance
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Evaluation Setup
◼Eval.1: Build baseline models

• Train six cost models using all 
training data on the six systems.

• Test on the data obtained from the 
same/different systems from training
• Baseline models : Targets of Accuracy

• Source models : Initial state of TL

◼Eval.2: Transfer learning
• From partial training data of the target 

system, re-train other five models in Eval.1

• Target systems
• CPU system, Xeon E5-2673

• GPU system, Tesla T4
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Xeon E5-2673 Xeon Platinum 8270 EPYC 7452 Graviton2 Tesla T4 Tesla K80Results of Eval.1
◼Baseline/Source model

◼Testing data are obtained from the 
same/different systems from training data
• Cost models trained for each system

• Highest PCA for each sysytem

• Cost models trained for other CPU systems
• Lower PCA, differences even between models

• Cost models of different architecture systems
• PCA is around 0.5, which is equivalent to random

◼CPU performance prediction uses different 
features than GPU performance prediction
• Different architectures could need different 

program features for prediction
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Results of Eval.2
◼Target system : Xeon E5-2673 

• Normal learning

• Transfer learning

• Baseline model

• Source models

◼Single task (4,000 programs)
• Transfer learning shows a higher PCA

◼Selecting the most accurate source 
modelcan finally achieve high prediction 
accuracy with less training data in TL
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Transfer Learning Technique
Use 5-layer perceptron

◼Fine-tuning (Eval.2)

• Updates all layers in the same way as in 
normal model learning where network 
weights are initialized randomly

• The same accuracy can be expected if 
enough training data are available
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◼Feature Extractor (Eval.3)

• Retains the weights in some layers of 
the source model and update only other 
layers during training

• Reduces the degree of freedom of the 
network, faster convergence

… …
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……

Input
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… ……… … ………

A fine-tuned model for system B A pre-trained model for system A
A cost model for system B using 
the feature extractor of A 
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Results of Eval.3
◼Fixed four layers as feature extractor 

and updated only single output layer
• Source : EPYC 7452 

• Target : Xeon E5-2673

◼The accuracy saturates at a lower value 
• Because the number of weights tuned for 

the target system is smaller

◼Fine tuning is better when a sufficient 
amount of data are available
• But the feature extractor approach could be 

one option when only few data are available

June 3, 2022 iWAPT2022 14



Training Data Selection (Eval.4)
◼Compared three methods for reducing 

the training data in normal learning
• (1) the number of schedules is fixed to 

4,000 and the number of tasks is reduced 
by half

• (2) the number of tasks is fixed to 1,600 
and the number of schedules is reduced 
by half

• (3) the number of programs and tasks is 
reduced by half respectively

◼A higher priority to getting more tasks 
achieve higher accuracy even with the 
same amount of performance data
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Training Data Selection (Eval.4)
◼Compare three methods for reducing 

the training data in transfer learning
• Source : EPYC 7452 

• Target : Xeon E5-2673

◼Unlike normal learning, the decrease 
in accuracy is small when reducing 
data
• Source model is trained with all the 

available data of EPYC

• Learns program features useful for 
prediction very well

◼A higher priority to getting more 
tasks achieve higher accuracy

June 3, 2022 iWAPT2022 16

0.75

0.8

0.85

0.9

200 400 800 1600 3200 6400

P
ai

rw
is

e
 C

o
m

p
ar

is
o

n
 A

cc
u

ra
cy

Number of programs used for training (x 1,000)

Constant number of  schedules

Constant ratio of number of tasks and schedules

Constant number of tasks



0.7

0.75

0.8

0.85

0.9

0.95

1

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

P
ai

rw
is

e 
C

o
m

p
ar

is
o

n
 A

cc
u

ra
cy

Number of schedules used for training

Normal learning Baseline (Xeon E5-2673)

Transfer learning (Source: EPYC 7452) Source model (EPYC 7452)

Learning Efficiency
◼Construct a cost model with the same 

prediction accuracy from a smaller 
number of training data
• Source model with the highest PCA

• Fine tuning is performed to update all 
layers

• Fix the maximum number of tasks to 
1,600, gradually increase the number of 
schedules

◼TL requires only about 1200 to 
achieve the same accuracy as normal 
learning
• which is 30% of the baseline model
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Learning Efficiency
◼TL model of Tesla T4 

• Achieves the same prediction accuracy 
using 1,000 schedules which is 25% of 
the baseline model

◼The proposed method is effective in 
reducing not only the amount of 
data but also training time
• TL can reduce the execution time by 

78% to achieve the same accuracy
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Program Performance
◼Optimize a pre-trained inference 

model, ResNet-50 for Xeon E5-2673
• Baseline model
• Transfer learning trained with 30% data
• Source Model

◼The transfer learning model achieves 
the same reduction in inference time 
as the baseline model
• The optimized inference models achieved 

a 16% reduction in execution time

◼The model built from a small amount 
of performance data achieves program 
speedup as the model trained with a 
large amount of data
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Conclusions
◼We proposed a data-driven method to build cost models for compiler 

optimization
• Focus on reducing the performance data of a target system, by using transfer learning

• Proposed method can significantly reduce the training data

• TL can make it more affordable to build a cost model for compiler optimization in a 
data-driven way

◼Future work
• Use this approach also to other applications while further improving the accuracy with 

less training data
• Explore a way to provide even higher performance in a variety of combinations of systems and 

applications.
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