

# A Cost Model for Compilers Based on Transfer Learning

Yuta Sasaki\*, Keichi Takahashi‡\*, Yoichi Shimomura‡, Hiroyuki Takizawa‡\*

- \* Graduate School of Information Sciences, Tohoku University, ysasaki@hpc.is.tohoku.ac.jp
- ‡ Cyberscience Center, Tohoku University, {keichi,shimomura32,takizawa}@tohoku.ac.jp Yuta Sasaki is presently with NTT DATA Corporation.

The Seventeenth International Workshop on Automatic Performance Tuning (iWAPT2022)

### Outline

- **■**Introduction
- **■**Proposed Method
- **■**Dataset and Evaluation Metrics
- **Evaluation and Results**
- **■**Discussions and Conclusions

### Introduction

#### ■HPC system architectures are getting more complicated

• Automatic optimization by compilers, compiler optimization, is becoming more crucial

#### **■**Compilers perform code optimizations for high-performance

- Various optimization passes are implemented and can be applied automatically
- Sometime applying these passes might even decrease the performance depending on the target system and application

#### **■**Compiler needs to select which passes to apply to maximize the performance

- In what order to apply them? / What parameters to use?
- Need to evaluate the candidates of optimization passes
  - Execution a huge number of candidates results in long compilation time

Source code
ime Optimization
passes

Executables

# Cost Model for Compiler Optimization

- ■Cost models are used to predict the performance improvement without running the program
  - Machine learning is often used to empirically construct cost models in a data-driven way
  - Analytical modeling of a modern complex computing system is infeasible

#### **■**Cost model based on machine learning

- Built from performance data, which are collected by running a huge number of programs on the target system
  - Time-consuming
- Many cost models based on machine learning is specialized for training system
  - Users need to collect performance data in their systems to build their own models

# Overview of the Proposed Method

#### ■Building a cost model of a target system from as few data as possible

- Adopts transfer learning to build a cost model of the target system from a pre-trained cost model, a source model, of another system
- Can build build multiple models from a single source model with fewer data



# The Cost of Building a Training Dataset

- ■A data-driven approach to build a cost model needs a large dataset
- ■The cost of building a training dataset is strongly correlated to the number of times to run programs on the target system
  - A program is defined by its source code and a sequence of optimization passes
    - Each sample in training data is a pair of a program and its performance on the target system
  - It is potentially possible to improve the prediction accuracy by carefully selecting training data with the same number of training data



### Dataset for the Evaluation

- ■TenSet [1]: A large-scale dataset to train the cost model for TVM
  - Consists of trained deep neural networks and sequences of optimization passes
    - Neural networks are divided into subgraphs called tasks
    - TVM compiler optimizes the whole network by applying a sequence of optimization passes called a schedule to each task
  - Annotated with performance labels on 4 CPU and 2 GPU systems
    - 4 CPU systems: Xeon E5-2673, Xeon Platinum 8272, AMD EPYC 7452 and ARM Graviton2
    - 2 GPU systems: NVIDIA Tesla T4 and NVIDIA Tesla K80

#### ■We use DNNs in two ways

- To build a cost model
- A program to be optimized



### **Evaluation Metrics**

#### **■**Learning efficiency of transfer learning

# of programs required to reach the baseline performance by transfer learning

# of programs used to train the baseline model

Not include # of training data used to train the source model in the numerator

#### **■**Prediction accuracy (Pairwise Comparison Accuracy)

- Predicts performance of N programs
- M: # of pairs of which the predicted and measured performance values match
- The cost model with PCA close to 1 will be able to select a better optimization pass

$$PCA = \frac{M}{NC_2} = \frac{M}{N \cdot (N-1)/2}$$



### Overview of the Evaluation

- ■To achieve higher prediction accuracy with less training data
  - Source model selection
  - Transfer learning technique
  - Training data selection
- ■Using the model trained on a small number of data, optimize the program and evaluate its performance

# **Evaluation Setup**

#### **■**Eval.1: Build baseline models

- Train six cost models using all training data on the six systems.
- Test on the data obtained from the same/different systems from training
  - Baseline models : Targets of Accuracy
  - Source models: Initial state of TL

#### **■**Eval.2: Transfer learning

- From partial training data of the target system, re-train other five models in Eval.1
- Target systems
  - CPU system, Xeon E5-2673
  - GPU system, Tesla T4



10 June 3, 2022 iWAPT2022

**Partial** 

### Results of Eval.1

- **Baseline/Source model**
- Testing data are obtained from the same/different systems from training data
  - Cost models trained for each system
    - Highest PCA for each sysytem
  - Cost models trained for other CPU systems
    - Lower PCA, differences even between models
  - Cost models of different architecture systems
    - PCA is around 0.5, which is equivalent to random
- ■CPU performance prediction uses different features than GPU performance prediction
  - Different architectures could need different program features for prediction



### Results of Eval.2

- ■Target system : Xeon E5-2673
  - Normal learning
  - Transfer learning
  - Baseline model
  - Source models
- ■Single task (4,000 programs)
  - Transfer learning shows a higher PCA
- ■Selecting the most accurate source modelcan finally achieve high prediction accuracy with less training data in TL



# Transfer Learning Technique

#### Use 5-layer perceptron

#### ■Fine-tuning (Eval.2)

- Updates all layers in the same way as in normal model learning where network weights are initialized randomly
- The same accuracy can be expected if enough training data are available

#### **■Feature Extractor** (Eval.3)

- Retains the weights in some layers of the source model and update only other layers during training
- Reduces the degree of freedom of the network, faster convergence



### Results of Eval.3

■ Fixed four layers as feature extractor and updated only single output layer

• Source : EPYC 7452

• Target : Xeon E5-2673

#### ■The accuracy saturates at a lower value

 Because the number of weights tuned for the target system is smaller

# ■ Fine tuning is better when a sufficient amount of data are available

 But the feature extractor approach could be one option when only few data are available



Training Data Selection (Eval.4)

■Compared three methods for reducing the training data in **normal learning** 

- (1) the number of schedules is fixed to 4,000 and the number of tasks is reduced by half
- (2) the number of tasks is fixed to 1,600 and the number of schedules is reduced by half
- (3) the number of programs and tasks is reduced by half respectively
- ■A higher priority to getting more tasks achieve higher accuracy even with the same amount of performance data



iWAPT2022 1

Training Data Selection (Eval.4)

■Compare three methods for reducing the training data in **transfer learning** 

• Source : EPYC 7452

• Target : Xeon E5-2673

- Unlike normal learning, the decrease in accuracy is small when reducing data
  - Source model is trained with all the available data of EPYC
  - Learns program features useful for prediction very well
- ■A higher priority to getting more tasks achieve higher accuracy



Constant ratio of number of tasks and schedules

Constant number of tasks

# Learning Efficiency

- ■Construct a cost model with the same prediction accuracy from a smaller number of training data
  - Source model with the highest PCA
  - Fine tuning is performed to update all layers
  - Fix the maximum number of tasks to 1,600, gradually increase the number of schedules
- ■TL requires only about 1200 to achieve the same accuracy as normal learning
  - which is 30% of the baseline model





# Learning Efficiency

- ■TL model of Tesla T4
  - Achieves the same prediction accuracy using 1,000 schedules which is 25% of the baseline model
- ■The proposed method is effective in reducing not only the amount of data but also training time
  - TL can reduce the execution time by 78% to achieve the same accuracy



# Program Performance

- ■Optimize a pre-trained inference model, ResNet-50 for Xeon E5-2673
  - Baseline model
  - Transfer learning trained with 30% data
  - Source Model
- The transfer learning model achieves the same reduction in inference time as the baseline model
  - The optimized inference models achieved a 16% reduction in execution time
- The model built from a small amount of performance data achieves program speedup as the model trained with a large amount of data



### Conclusions

- ■We proposed a data-driven method to build cost models for compiler optimization
  - Focus on reducing the performance data of a target system, by using transfer learning
  - Proposed method can significantly reduce the training data
  - TL can make it more affordable to build a cost model for compiler optimization in a data-driven way

#### ■Future work

- Use this approach also to other applications while further improving the accuracy with less training data
- Explore a way to provide even higher performance in a variety of combinations of systems and applications.

### Acknowledgments

#### ■This work is partially supported by

- MEXT Next Generation High-Performance Computing Infrastructures and Applications R&D Program "R&D of A Quantum-Annealing-Assisted Next Generation HPC Infrastructure and its Applications"
- JSPS KAKENHI Grant Number JP20H00593

June 3, 2022 iWAPT2022 \_\_\_\_\_ 21