
A Cost Model for Compilers
Based on Transfer Learning
Yuta Sasaki∗, Keichi Takahashi‡∗, Yoichi Shimomura‡, Hiroyuki Takizawa‡∗

∗ Graduate School of Information Sciences, Tohoku University, ysasaki@hpc.is.tohoku.ac.jp

‡ Cyberscience Center, Tohoku University, {keichi,shimomura32,takizawa}@tohoku.ac.jp

Yuta Sasaki is presently with NTT DATA Corporation.

The Seventeenth International Workshop on Automatic Performance Tuning (iWAPT2022)

Outline
◼Introduction

◼Proposed Method

◼Dataset and Evaluation Metrics

◼Evaluation and Results

◼Discussions and Conclusions

June 3, 2022 iWAPT2022 2

Introduction
◼HPC system architectures are getting more complicated

• Automatic optimization by compilers, compiler optimization, is becoming more crucial

◼Compilers perform code optimizations for high-performance
• Various optimization passes are implemented and can be applied automatically

• Sometime applying these passes might even decrease the performance
depending on the target system and application

◼Compiler needs to select which passes to apply to maximize the performance
• In what order to apply them? / What parameters to use?

• Need to evaluate the candidates of optimization passes
• Execution a huge number of candidates results in long compilation time

June 3, 2022 iWAPT2022 3

Source code

Optimization
passes

Executables

Cost Model for Compiler Optimization
◼Cost models are used to predict the performance improvement

without running the program
• Machine learning is often used to empirically construct cost models in a data-driven way

• Analytical modeling of a modern complex computing system is infeasible

◼Cost model based on machine learning
• Built from performance data, which are collected

by running a huge number of programs on the target system
• Time-consuming

• Many cost models based on machine learning is specialized for training system
• Users need to collect performance data in their systems to build their own models

June 3, 2022 iWAPT2022 4

Overview of the Proposed Method
◼Building a cost model of a target system from as few data as possible

• Adopts transfer learning to build a cost model of the target system from a pre-trained
cost model, a source model, of another system

• Can build build multiple models from a single source model with fewer data

June 3, 2022 iWAPT2022 5

Cost Model
(System A)Performance

Data

Perfor-
mance
Data Cost Model

(System B)
Transfer Learning

System A

System B

Normal
Learning

Performance
Measurement
(Fewer
times)

Performance
Measurement
(Many times)

Cost Model
(System C)

System C

Perfor-
mance
Data

Pre-trained
Source Model

Target Models

The Cost of Building a Training Dataset
◼A data-driven approach to build a cost model needs a large dataset

◼The cost of building a training dataset is strongly correlated to the number of
times to run programs on the target system
• A program is defined by its source code and a sequence of optimization passes

• Each sample in training data is a pair of a program and its performance on the target system

• It is potentially possible to improve the prediction accuracy
by carefully selecting training data with the same number of training data

June 3, 2022 iWAPT2022 6

2 source codes

3 sequences of
optimization passes

6 executables
(6 measurements)

3 source codes

2 sequences

6 executables
(6 measurements)

Equivalent
measurement cost

Dataset for the Evaluation
◼TenSet [1] : A large-scale dataset to train the cost model for TVM

• Consists of trained deep neural networks and sequences of optimization passes
• Neural networks are divided into subgraphs called tasks

• TVM compiler optimizes the whole network by applying a sequence of optimization passes called a
schedule to each task

• Annotated with performance labels on 4 CPU and 2 GPU systems
• 4 CPU systems : Xeon E5-2673, Xeon Platinum 8272, AMD EPYC 7452 and ARM Graviton2

• 2 GPU systems : NVIDIA Tesla T4 and NVIDIA Tesla K80

◼We use DNNs in two ways
• To build a cost model

• A program to be optimized

June 3, 2022 iWAPT2022 7

Execution time (2~8 measurements)
51 million measurement data

Up to 4,000 schedules / task

2,308 tasks

21 deep neural networks ResNet-18

Execution
time (1st)

Execution
time (2nd)

Task 2

DCGAN ResNet-50

Task1

["CI", 5],
["CHW", 3, "local"],
["SP", 3, 0, 4, [1, 1, 1], 1],…

…

…

…

…
Execution
time (8th)

["CI", 5],
["SP", 3, 0, 4, [2, 1, 1], 1],
["SP", 3, 4, 7, [1, 7, 1], 1], …

Task 18

MobileNet v2…

["CI", 5
["SP", 3, 0, 4 , [1, 1, 4], 1],
["SP", 3, 4, 7, [1, 7, 1], 1], …

Testing Data (3 models)Training Data (18 models)

Evaluation Metrics

June 3, 2022 iWAPT2022 8

◼Learning efficiency of transfer learning
of programs required to reach the baseline performance by transfer learning

of programs used to train the baseline model
• Not include # of training data used to train the source model in the numerator

◼Prediction accuracy (Pairwise Comparison Accuracy)
• Predicts performance of N programs

• M: # of pairs of which the predicted and
measured performance values match

• The cost model with PCA close to 1 will
be able to select a better optimization pass

Measured execution time

Predicted
execution
time

PCA = 1
PCA = 5/6

=0.83
PCA = 0

Overview of the Evaluation
◼To achieve higher prediction accuracy with less training data

• Source model selection

• Transfer learning technique

• Training data selection

◼Using the model trained on a small number of data,
optimize the program and evaluate its performance

June 3, 2022 iWAPT2022 9

Evaluation Setup
◼Eval.1: Build baseline models

• Train six cost models using all
training data on the six systems.

• Test on the data obtained from the
same/different systems from training
• Baseline models : Targets of Accuracy

• Source models : Initial state of TL

◼Eval.2: Transfer learning
• From partial training data of the target

system, re-train other five models in Eval.1

• Target systems
• CPU system, Xeon E5-2673

• GPU system, Tesla T4

June 3, 2022 iWAPT2022 10

Training Data (EPYC 7452)

Training Data (Xeon Platinum 8270) Testing Data

Testing Data

Training Data (Graviton2) Testing Data

Training Data (Tesla T4) Testing Data

Training Data (Tesla K80) Testing Data

Cost Model
(EPYC)

Cost Model
(XeonE5)

Partial Data

Cost Model
(Xeon E5)

Evaluation

Evaluation

Normal Learning

Transfer Learning

Partial
Extraction

Cost Model
(XeonE5)

Training Data(E5)

Normal
Learning

Training Data (Xeon E5-2673) Testing Data

Comparing Accuracy

Partial Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Xeon E5-2673 Xeon Platinum
8270

EPYC 7452 Graviton2 Tesla T4 Tesla K80

CPU GPU

P
ai

rw
is

e
C

o
m

p
ar

is
o

n
 A

cc
u

ra
cy

Systems with collected performance data

Evaluated Systems

Xeon E5-2673 Xeon Platinum 8270 EPYC 7452 Graviton2 Tesla T4 Tesla K80Results of Eval.1
◼Baseline/Source model

◼Testing data are obtained from the
same/different systems from training data
• Cost models trained for each system

• Highest PCA for each sysytem

• Cost models trained for other CPU systems
• Lower PCA, differences even between models

• Cost models of different architecture systems
• PCA is around 0.5, which is equivalent to random

◼CPU performance prediction uses different
features than GPU performance prediction
• Different architectures could need different

program features for prediction

June 3, 2022 iWAPT2022 11

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

3.125 6.25 12.5 25 50 100 200 400 800 1600 3200 6400

P
ai

rw
is

e
 C

o
m

p
ar

is
o

n
 A

cc
u

ra
cy

Number of programs used for training (x 1,000)

Normal learning Baseline (Xeon E5-2673)

Transfer learning (Source: Xeon Platinum 8270) Source model (Xeon Platinum 8270)

Transfer learning (Source: EPYC 7452) Source model (EPYC 7452)

Transfer learning (Source: Graviton2) Source model (Graviton2)

Transfer learning (Source: Tesla T4) Source model (Tesla T4)

Transfer learning (Source: Tesla K80) Source model (Tesla K80)

Results of Eval.2
◼Target system : Xeon E5-2673

• Normal learning

• Transfer learning

• Baseline model

• Source models

◼Single task (4,000 programs)
• Transfer learning shows a higher PCA

◼Selecting the most accurate source
modelcan finally achieve high prediction
accuracy with less training data in TL

June 3, 2022 iWAPT2022 12

Transfer Learning Technique
Use 5-layer perceptron

◼Fine-tuning (Eval.2)

• Updates all layers in the same way as in
normal model learning where network
weights are initialized randomly

• The same accuracy can be expected if
enough training data are available

June 3, 2022 iWAPT2022 13

◼Feature Extractor (Eval.3)

• Retains the weights in some layers of
the source model and update only other
layers during training

• Reduces the degree of freedom of the
network, faster convergence

… …

Output
Layer

……

Input
Layer

… ……… … ………

A fine-tuned model for system B A pre-trained model for system A
A cost model for system B using
the feature extractor of A

0.75

0.8

0.85

0.9

12.5 25 50 100 200 400 800 1600 3200 6400

P
ai

rw
is

e
 C

o
m

p
ar

is
o

n
 A

cc
u

ra
cy

Number of programs used for training (x 1,000)

Normal learning

Baseline (Xeon E5-2673)

Transfer learning (Source: EPYC 7452)

Source model (EPYC 7452)

Transfer learning (Source: EPYC 7452, 4 layers fixed)

Results of Eval.3
◼Fixed four layers as feature extractor

and updated only single output layer
• Source : EPYC 7452

• Target : Xeon E5-2673

◼The accuracy saturates at a lower value
• Because the number of weights tuned for

the target system is smaller

◼Fine tuning is better when a sufficient
amount of data are available
• But the feature extractor approach could be

one option when only few data are available

June 3, 2022 iWAPT2022 14

Training Data Selection (Eval.4)
◼Compared three methods for reducing

the training data in normal learning
• (1) the number of schedules is fixed to

4,000 and the number of tasks is reduced
by half

• (2) the number of tasks is fixed to 1,600
and the number of schedules is reduced
by half

• (3) the number of programs and tasks is
reduced by half respectively

◼A higher priority to getting more tasks
achieve higher accuracy even with the
same amount of performance data

June 3, 2022 iWAPT2022 15

0.75

0.8

0.85

0.9

200 400 800 1600 3200 6400

P
ai

rw
is

e
 C

o
m

p
ar

is
o

n
 A

cc
u

ra
cy

Number of programs used for training (x 1,000)

Constant number of schedules

Constant ratio of number of tasks and schedules

Constant number of tasks

Training Data Selection (Eval.4)
◼Compare three methods for reducing

the training data in transfer learning
• Source : EPYC 7452

• Target : Xeon E5-2673

◼Unlike normal learning, the decrease
in accuracy is small when reducing
data
• Source model is trained with all the

available data of EPYC

• Learns program features useful for
prediction very well

◼A higher priority to getting more
tasks achieve higher accuracy

June 3, 2022 iWAPT2022 16

0.75

0.8

0.85

0.9

200 400 800 1600 3200 6400

P
ai

rw
is

e
 C

o
m

p
ar

is
o

n
 A

cc
u

ra
cy

Number of programs used for training (x 1,000)

Constant number of schedules

Constant ratio of number of tasks and schedules

Constant number of tasks

0.7

0.75

0.8

0.85

0.9

0.95

1

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

P
ai

rw
is

e
C

o
m

p
ar

is
o

n
 A

cc
u

ra
cy

Number of schedules used for training

Normal learning Baseline (Xeon E5-2673)

Transfer learning (Source: EPYC 7452) Source model (EPYC 7452)

Learning Efficiency
◼Construct a cost model with the same

prediction accuracy from a smaller
number of training data
• Source model with the highest PCA

• Fine tuning is performed to update all
layers

• Fix the maximum number of tasks to
1,600, gradually increase the number of
schedules

◼TL requires only about 1200 to
achieve the same accuracy as normal
learning
• which is 30% of the baseline model

June 3, 2022 iWAPT2022 17

1200

4000 schedules

Learning Efficiency
◼TL model of Tesla T4

• Achieves the same prediction accuracy
using 1,000 schedules which is 25% of
the baseline model

◼The proposed method is effective in
reducing not only the amount of
data but also training time
• TL can reduce the execution time by

78% to achieve the same accuracy

June 3, 2022 iWAPT2022 18

0.7

0.75

0.8

0.85

0.9

0.95

1

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

P
ai

rw
is

e
C

o
m

p
ar

is
o

n
 A

cc
u

ra
cy

Number of schedules used for training

Normal learning Baseline (Tesla T4)

Transfer learning (Source: Tesla K80) Source model (Tesla K80)

1000

4000 schedules

Program Performance
◼Optimize a pre-trained inference

model, ResNet-50 for Xeon E5-2673
• Baseline model
• Transfer learning trained with 30% data
• Source Model

◼The transfer learning model achieves
the same reduction in inference time
as the baseline model
• The optimized inference models achieved

a 16% reduction in execution time

◼The model built from a small amount
of performance data achieves program
speedup as the model trained with a
large amount of data

June 3, 2022 iWAPT2022 19

0

5

10

15

20

25

30

35

40

ResNet50

Ex
ec

u
ti

o
n

 T
im

e[
m

s]

Baseline(E5-2673) Transfer Learning Source(EPYC 7452)

15%

Conclusions
◼We proposed a data-driven method to build cost models for compiler

optimization
• Focus on reducing the performance data of a target system, by using transfer learning

• Proposed method can significantly reduce the training data

• TL can make it more affordable to build a cost model for compiler optimization in a
data-driven way

◼Future work
• Use this approach also to other applications while further improving the accuracy with

less training data
• Explore a way to provide even higher performance in a variety of combinations of systems and

applications.

June 3, 2022 iWAPT2022 20

Acknowledgments
◼This work is partially supported by

• MEXT Next Generation High-Performance Computing Infrastructures and Applications
R&D Program “R&D of A Quantum-Annealing-Assisted Next Generation HPC
Infrastructure and its Applications”

• JSPS KAKENHI Grant Number JP20H00593

June 3, 2022 iWAPT2022 21

