Scalable Tracing of MPI Events and

Performance Metrics

Tao Yan, Qingguo Xu, Jiyu Luo, Jingwei Sun*, Guangzhong Sun

University of Science and Technology of China

Background

Tracing is a basic approach to analyzing the performance of MPI

programs.

Besides MPI event trace, some performance analysis tasks also require
detailed runtime metrics from specific performance counters during

different execution periods of HPC applications.

With the growth of parallel scales, storing the trace and performance

metrics of MPI programs becomes increasingly challenging.

Related Work

Existing mature MPI trace analysis tools such as tau, Vampir, mpiP, etc.
only provide general-purpose domain-independent compression (for
example, using the zlib library) or aggregate representation (summarizing

the trace as a series of statistical values such as mean and variance).

The methods in existing research papers, such as Scalatrace, DwarfCode,
LCR, etc., either use design pattern strings for pattern matching to find
the loop structure in Trace and the repeated parts between processes, or

realize compression through time series modeling.

Related Work

The problems of the prior art are as follows:

- Common domain-independent compression methods do not have high

compression ratios.

- The information loss of the aggregate representation method is too high

to restore the MPI program behavior.

- Methods for generating scalable traces only focus on MPI

communication traces, ignoring computing performance data

Our contributions

- We implement a method that can losslessly compress communication traces of
MPI programs. By leveraging the SPMD feature across processes, a novel method
of merging traces across processes is proposed to further reduce the size of the
compressed traces.

- We propose a clustering-based method for compressing performance counter
data that outperforms existing lossy compression methods for floating-point
data.

- We conduct a series of experiments to compare our tool and existing works,
including Scalatrace, DwarfCode, and LCR.The results show that our tool can
achieve generally higher compression ratio and less time cost.

Overview of Scalable Tracing Framework

= Tracing with PMPI and PAPI
= Intra-process compression

- Inter-process compression

[Binary MPI Programs]

| Global Global Global
Terminal dict Grammar Statistics

__

Communication Computation
Trace Statistics

Intra-process Compression

Terminal dict Cluster
Grammar Ids

__

__

Inter-process Compression

__

Yoo ooooo o

- -

~

Overview of tracing and compressing method

Tracing

= Comm MPI communication

traces

= Our tracing tool is implemented
based on mpiP and uses PMPI to

trace MPI events

for(i =

0; i < 100; i++) {
if(rank % 2) {

MPI Isend(...);
MPI Wait(...);

} else {

}

MPI Irecv(...);
MPI Wait(...);

=

- Record performance metrics information between two MPI

functions

- We currently record information from hardware performance

counters due to its generality in applications

rank 0 N rank 1)
trace trace
MPI1_lrecv(...) MPI1_lIsend(...)
MPI_Wait(...) MPI_Wait(...)
MPI_lIrecv(...) MPI_lsend(...)
MPI_Wait(...) MPI_Wait(...)
MPI_Irecv(...) MPI_lIsend(...)
MPI_Wait(...) MPI_Wait(...)
AN
communication traces
rank 0 A
trace
MPI_Irecv(...)
compute(...)
MPI_Wait(...)
compute(...)
MPI _Irecv(...)
compute(...)
_)

communication traces and performance metrics

7

Optimization

- To better leverage the similarity between events

- Maintain a pool of free ids for many MPI objects

- Record only what MPI objects represent instead of their specific values by
using a pool of free ids.

- Example: MPI_Request and MPI_ Comm.

- Benefits: Reduces the amount of data that needs to be recorded, making it
easier to analyze communication traces and speeding up compression
procedures.

= Use relative ranks to reduce communication trace redundancy

= Record the value of some variables as offsets relative to the caller's rank to
reduce communication trace redundancy.

- Example: Communication patterns in HPC applications that use a Cartesian
grid.

- Benefits: Reduces the amount of data that needs to be recorded, making it
easier to analyze communication traces and speeding up compression
procedures.

Intra-process Compression

- Context-free grammar
-1t can find repetitive structures in symbol
sequences and extract them
-1t is defined as G = {V, %, S, R} which represent
non-terminals, terminals, start symbol, and

generating rules respectively

= Compress MPI trace to a context-free grammar and

symbol dictionary

- Use space-optimized sequitur algorithm to

compress

/

o

rank 0
trace
MPI_Init(...)
compute(...)

MPI_Bcast(...)

compute(...)

MPI_Alltoall(...)

compute(...)

\

/

>

terminal dict

MPI1_Init(...) 1
MPI_Bcast(...) 2
MPI_AIItoaII(...) 9

\

4 grammar

0:1M 2M 1M1
-1:3M 4M

- J

An example of compress a trace to a grammar

Intra-process compression

= Time information is processed as dur
for communication function durations

and blank for computing intervals

- Two lossless compression methods,

zlib and Izma

= Two lossy compression methods, a
statistical method that records only
the mean and standard deviation and

SZ3 lossy compression algorithm

Timestamps

61989

81870

111127
111186
114365
114381
114400
114410
114426
114434
114451
114459
114474
114482
114499

—

Dur

29257
3179
19
16
17
15
17

:> Blank

19881

Time information processing

10

Intra-process Compression

- The performance counter data itself comes from the
execution of code blocks, and the number of code
blocks is limited. Therefore, there are only a limited
number of combinations for performance counter
data. Due to performance variance, the data may be

scattered within a certain range, making it possible

to achieve compression through clustering methods.

= With the ability to represent similar data by the
value of the cluster center, our method offers
advantages compared to other compression

methods, enabling higher compression ratios.

1e7 Performance data
°
2.0 A
1.5
=
8
) 1.0 A
-
°
0.5 ®
°® °
00 ®® e
0.0 0.5 1.0 1.5 2.0 2.5
LST_INS 1e9

Scatter plot of two types of performance data in NPB LU

11

Inter-process compression

= Merge the terminal dictionaries of all
processes and assigning each terminal a

global id

= Utilize the SPDM features of the

program

= Merge grammars with different methods
according to the number of unique

grammars

Terminal Dictionary of Rank 0

MPI function with parameters id
MPI_lrecv;1;8;-2;0:;0;1 1
MPI_Irecv;375000;8;-1;0:;0;2 2

Merged Terminal Dictionary of 0 and 1

Terminal Dictionary of Rank 1

MPI function with parameters id
MPI_Irecv;1;8;-2;0:;0;1 1
MPI_Send;1;8;-1;0;2 2
MPI_Irecv;375000;8;-1;0:;0;2 3

MPI function with parameters id
MPI_lrecv;1;8;-2;0:;0;1 1
MPI_Send;1;8;-1;0;2 2

Example of merging parts of two terminal dictionaries

12

nter-process Compression

Rank O

S1 -> Ajg) Bpo*°dpo)

A->abc Merge 0 and 1 Merge 0 and 1 Merge 0 and 1
B->fA?
S1-> Alg) Bio*°dpo 25
o s L[St A0 B | g s e 25
—> S2 > A D g oA gL 256 [[0,1] B[o,17~ 9jo1 ©[1]
Rank 1 A->abc 27 A BT o A->abc
s B -> f A2 A-=abe B -> f A2
S2-> C1) Dpayepy) D ->f A2 B->1A
C->abc
D ->f C?
first pass of seoond. pass of LCS pass
combination combination

Example of merging two grammars

13

Evaluation

- Selected Programes:
= CG, MG, BT, SP and LU from NAS Parallel Benchmark (NPB).
- SWEEP3D (solver for neutron transport).

- FLASH (production software package for handling general compressible
flow problems).

= Problem Sizes:
=NPB3.3.1: D
=FLASH: 64x64x64
= SWEEP3D: 1000x1000x1000

- Experimental Setup:
= Processor: Intel® Xeon Scale 6248 CPU (20 cores2.5 GHz).
Memory: 192 GB DDR4 2933 MHz RAM.
= Network: Mellanox HDR100.
=Compiler: GCC 4.8.5
= MPI: OpenMPI 3.1.0.

14

Evaluation

= Baseline Method
=zIlib
= Dwarfcode
= Scalatrace

*LCR

15

Evaluation

= Compression ratio

Size (KB)

Size (KB)

Size (KB)

Il Ours Il ScalaTrace I LCR m DwarfCode ZLIB
BT CG MG
10° 10° -
104 .
104 h 104]
10 A 102 4 102 -
64 121 256 529 64 128 256 512 64 128 256 512
SP LU sedov-3d
6
10 106 10%
a 103 4
10 104 p
102 4
102 102 -
101 p
64 121 256 529 64 128 256 512 64 128 256 512
sod stirtrub sweep3d
104 106 4
3
10 104 - 104 4
102
102 102 -
10!
64 128 256 512 64 128 256 512 64 128 256 512

Number of Processes

Number of Processes

Number of Processes

16

Evaluation

= Compression time

Compression Time (s)

Compression Time (s)

Compression Time (s)

Em Ours I ScalaTrace B LCR wm DwarfCode
BT CG MG
10°] 107
107 4]
2]
102 4 107 5
1]
10* 4 10 10! 4
64 121 256 512 64 128 256 512
SP sedov-3d
107 4
4 |
10 102 -
102 4 E
102 N
10* 107
64 121 256 64 128 256 512 64 128 256 512
sod stirtrub sweep3d
107 104
102 .
103
N 102
10* 4 101 4
10t
64 128 256 512 64 128 256 512 64 128 256 512

Number of Processes

Number of Processes

Number of Processes

17

Evaluation

= Clustering-based method compare with SZ3

Program Clustering-based Method SZ3 Method Program Clustering-based Method SZ3 Method
CR PSNR NRMSE CR PSNR NRMSE CR PSNR NRMSE CR PSNR NRMSE

BT 4785 47.20 0.004 338.09 2945 0.033 BT 5027 56.77 0.001 129.01 31.66 0.026
CG 6442 99.81 1E-5 779.69 50.11 0.003 CG 20412 9344 2E-5 2379 53.34 0.002
LU 4345 90.84 2E-5 5825 53.67 0.002 LU 10945 89.92 3E-5 10500 53.37 0.002
MG 2167 54.06 0.001 197.29 42.77 0.007 MG 2809 98.09 1E-5 49591 45.60 0.005
SP 6806 56.27 0.001 798.75 39.54 0.010 SP 17371 60.48 9E-4 625.84 41.06 0.008
Sedov 989.85 86.18 5E-5 2513 46.73 0.004 Sedov 1820 89.38 3E-5 71.45 58.68 0.001
StirTurb 5062 76.34 1E-4 490.57 52.78 0.002 StirTurb 13278 104.51 6E-6 1147 50.67 0.002
Sod 357.18 61.97 TE-4 9.22 42.86 0.007 Sod 901.80 96.01 1E-5 2542 47.87 0.004
sweep3dd 2525 55.34 0.001 366.03 29.76 0.032 sweep3d 1208 59.21 0.001 160.22 29.00 0.035

Compress result of one counter record

Compress result of three counter record

18

Conclusion and future work

= Conclusion
= propose a scalable tracing tool for recording and compressing MPI events and performance metrics.

= Compared with existing trace compression works, the proposed tool can achieve generally higher
compression ratio and less time cost, so it is more scalable to larger scale executions of MPI
programs.
= Future work
= Enhance its ability to deal with workloads with more different features and scales.

= Investigate efficient downstream performance analysis techniques based on the tool.

19

