
Scalable Tracing of MPI Events and 

Performance Metrics

Tao Yan, Qingguo Xu, Jiyu Luo, Jingwei Sun*, Guangzhong Sun

University of Science and Technology of China



Background

Tracing is a basic approach to analyzing the performance of MPI 

programs. 

Besides MPI event trace, some performance analysis tasks also require 

detailed runtime metrics from specific performance counters during 

different execution periods of HPC applications.

With the growth of parallel scales, storing the trace and performance 

metrics of MPI programs becomes increasingly challenging.

2



Related Work

Existing mature MPI trace analysis tools such as tau, Vampir, mpiP, etc. 

only provide general-purpose domain-independent compression (for 

example, using the zlib library) or aggregate representation (summarizing 

the trace as a series of statistical values such as mean and variance).

The methods in existing research papers, such as Scalatrace, DwarfCode, 

LCR, etc., either use design pattern strings for pattern matching to find 

the loop structure in Trace and the repeated parts between processes, or 

realize compression through time series modeling.

3



Related Work

The problems of the prior art are as follows:

▪Common domain-independent compression methods do not have high 

compression ratios.

▪ The information loss of the aggregate representation method is too high 

to restore the MPI program behavior.

▪Methods for generating scalable traces only focus on MPI 

communication traces, ignoring computing performance data

4



Our contributions

▪We implement a method that can losslessly compress communication traces of 

MPI programs. By leveraging the SPMD feature across processes, a novel method 

of merging traces across processes is proposed to further reduce the size of the 

compressed traces.

▪We propose a clustering-based method for compressing performance counter 

data that outperforms existing lossy compression methods for floating-point 

data.

▪We conduct a series of experiments to compare our tool and existing works, 

including Scalatrace, DwarfCode, and LCR.The results show that our tool can 

achieve generally higher compression ratio and less time cost.

5



Overview of Scalable Tracing Framework

▪ Tracing with PMPI and PAPI

▪ Intra-process compression

▪ Inter-process compression

6Overview of tracing and compressing method



Tracing

▪ Comm MPI communication 

traces

▪ Our tracing tool is implemented 

based on mpiP and uses PMPI to 

trace MPI events

7

communication traces

communication traces and performance metrics

▪ Record performance metrics information between two MPI 

functions

▪ We currently record information from hardware performance 

counters due to its generality in applications



Optimization

▪ To better leverage the similarity between events

▪ Maintain a pool of free ids for many MPI objects

▪Record only what MPI objects represent instead of their specific values by 
using a pool of free ids.

▪ Example: MPI_Request and MPI_Comm.

▪ Benefits: Reduces the amount of data that needs to be recorded, making it 
easier to analyze communication traces and speeding up compression 
procedures.

▪ Use relative ranks to reduce communication trace redundancy

▪Record the value of some variables as offsets relative to the caller's rank to 
reduce communication trace redundancy.

▪ Example: Communication patterns in HPC applications that use a Cartesian 
grid.

▪ Benefits: Reduces the amount of data that needs to be recorded, making it 
easier to analyze communication traces and speeding up compression 
procedures.

8



Intra-process compression

▪ Context-free grammar

▪ It can find repetitive structures in symbol 

sequences and extract them

▪ It is defined as 𝐺 = {𝑉, Σ, 𝑆, 𝑅} which represent 

non-terminals, terminals, start symbol, and 

generating rules respectively

▪ Compress MPI trace to a context-free grammar and 

symbol dictionary

▪ Use space-optimized sequitur algorithm to 

compress

9

An example of compress a trace to a grammar



Intra-process compression

▪ Time information is processed as dur

for communication function durations 

and blank for computing intervals

▪ Two lossless compression methods, 

zlib and lzma

▪ Two lossy compression methods, a 

statistical method that records only 

the mean and standard deviation and 

SZ3 lossy compression algorithm

10

Time information processing



Intra-process compression

▪ The performance counter data itself comes from the 

execution of code blocks, and the number of code 

blocks is limited. Therefore, there are only a limited 

number of combinations for performance counter 

data. Due to performance variance, the data may be 

scattered within a certain range, making it possible 

to achieve compression through clustering methods.

▪ With the ability to represent similar data by the 

value of the cluster center, our method offers 

advantages compared to other compression 

methods, enabling higher compression ratios. 

11

Scatter plot of two types of performance data in NPB LU



Inter-process compression

▪ Merge the terminal dictionaries of all 

processes and assigning each terminal a 

global id

▪ Utilize the SPDM features of the 

program

▪ Merge grammars with different methods 

according to the number of unique 

grammars 

12

Example of merging parts of two terminal dictionaries



Inter-process compression

13

Example of merging two grammars



Evaluation

▪ Selected Programs:

▪CG, MG, BT, SP and LU from NAS Parallel Benchmark (NPB).

▪SWEEP3D (solver for neutron transport).

▪FLASH (production software package for handling general compressible 
flow problems).

▪ Problem Sizes:

▪NPB3.3.1: D

▪FLASH: 64x64x64

▪SWEEP3D: 1000x1000x1000

▪ Experimental Setup:

▪Processor: Intel® Xeon Scale 6248 CPU (20 cores2.5 GHz).

▪Memory: 192 GB DDR4 2933 MHz RAM.

▪Network: Mellanox HDR100.

▪Compiler: GCC 4.8.5

▪MPI: OpenMPI 3.1.0.

14



Evaluation

▪ Baseline Method

▪zlib

▪Dwarfcode

▪Scalatrace

▪LCR

15



Evaluation

▪ Compression ratio

16



Evaluation

▪ Compression time

17



Evaluation

▪ Clustering-based method compare with SZ3

18

Compress result of one counter record Compress result of three counter record



Conclusion and future work

▪ Conclusion

▪propose a scalable tracing tool for recording and compressing MPI events and performance metrics.

▪Compared with existing trace compression works, the proposed tool can achieve generally higher 

compression ratio and less time cost, so it is more scalable to larger scale executions of MPI 

programs.

▪ Future work

▪Enhance its ability to deal with workloads with more different features and scales.

▪ Investigate efficient downstream performance analysis techniques based on the tool.

19


